
Playing with Python 1

University of Hull
Department of Computer Science

Wrestling with Python – Week 01

Playing with Python
Vsn. 1.0 Rob Miles 2013

Introduction
Welcome to our Python sessions.

Please follow the instructions carefully. You need to enter your programs exactly as they are

written, otherwise they will do the wrong thing, or nothing at all.

In this session you will learn a bit about Python and how to get started with the language.

This indicates an activity you should perform in at this point in the text. You may be

given precise instructions, or you may have to work something out for yourself.

This indicates something that you may want to think about later.

This indicates a warning to be careful about this bit.

Data processing with Python
Data processing is a posh term for fiddling with stuff. We are going to start with some numbers

and see how we can get Python to work on them for us. The first thing we need to do is start the

Python shell.

Press the Start button and search for IDLE. Start the program running.

Playing with Python 2

Once you have got the Shell running you should see a display like the one above. You can type

Python statements now and they will run instantly. While this is not how you would write an

enormous program, it is a good way to get started and experiment with the language.

Working with Expressions

Type in the following and press enter:

2

Note that the value is echoed back to you. The Python shell just takes the statement and sends back

a result. If you give it the value 2, you get 2 back.

Type in this expression and press enter:

2 + 2

This time the shell will work out the expression that you gave it, and produce a result.

Now try this:

5 * 10

This should leave you with the impression that perhaps the * operator does multiplication. Which

it does.

How about this one?

11 / 3

The program will print out 3.6666666, which is close enough to the correct answer

There is something here you need to be aware of here (sorry about this). The two

versions of Python (2 and 3) behave differently at this point.

Python 3 – does a floating point division and provides a floating point result (3.66666)

Python 2 – does an integer division and provides an integer result (3)

I feel bad about telling you this, but I’d feel worse about keeping it a secret. You can

get a Python 2 program to behave itself by telling it to use the updated division

routines:

from __future__ import division

The differences are not that many, but they are there, and you need to be mindful that if

something doesn’t seem to work that should do, it might be due to a language version

difference. I will highlight these as I go through the text.

Strange integer division foibles aside, Python behaves as you might expect it, when you give it

expressions.

Do brackets work?

(2+3) * 5

This should print 25, because the brackets cause the addition to be performed first.

Storing numeric values in variables

We can use Python as a calculator, but we know that computers are really all about storing and

processing data. To do this the computer needs a way of actually doing the storing. Python lets you

create variables to hold values.

Enter this code to create a variable:

age = 25

Playing with Python 3

Notice anything different? If the Python shell sees an expression it will work out the answer and

send it straight back. If it sees a Python statement it will perform it and then wait for the next

command. The statement above puts the value 25 into a variable called age. It doesn’t evaluate to

a result, and so nothing is printed. You can think of a variable as a named box in memory that

holds a particular value. We can change the contents of a box in memory by using an assignment

statement.

age = 25

The statement has an expression on one side (the things we have been working out) and a variable

on the other (a box we are going to put the result in). The equals character is the thing that

identifies this as an assignment operation.

The very first time you use a variable the Python system will reserve space for that variable and

give it the name that was set. Whenever the program uses that name in the future the Python

system will go and get the contents of that variable.

Enter this statement:

age

We are back in expression country again, in that Python will just work out the value of the

expression (25) and print it. We are pretty much back at the first thing we did, except that the

number is now coming from a variable, rather than the value 2 that we entered at the very start.

Enter this statement:

Age * 2

This should evaluate twice the age and then display the result (because that is what Python does).

But it doesn’t work. (If it works you’ve typed it wrong). If you type in exactly what you see above

you should get a message along the lines of:

Traceback (most recent call last):

 File "<pyshell#13>", line 1, in <module>

 Age * 2

NameError: name 'Age' is not defined

It will probably be in red, to indicate that the error is a bad thing.

What does this tell you about how Python manages variables?

To answer my own question, Python will create a variable the first time that it sees it, and will then

go and get that value each time the program refers to it. But the names of the variables are case

sensitive, in other words the variable age and the variable Age are different things. You could (but

it might be confusing) create two variables with those names, what the red text above indicates is

that if you use capital letters in the wrong place you will get problems.

We create variables every time we need to store something. We try to give them names that reflect

what they are being used for. You can create as many variables as you need, and you can use them

in expressions alongside literal values such as 2 or 3.

Working with Text

Now we can try something else:

Enter this statement:

Hello world

Python will not like this. Which is a bit of a shame if we want to put the phrase “Hello world” into

our program. We can address this by putting the text inside delimiters:

Playing with Python 4

Enter this statement:

'Hello world'

This doesn’t produce an error, in fact Python just seems to echo the text.

What does this tell us about strings enclosed in quotes?

We saw that when we typed a value, or an expression, Python just worked out the answer and

responded with it. When we type a string in quotes it seems that Python treats that as a value too.

We can test this theory. Enter the following:

'Hello ' + 'world'

If we are right, Python will add the two strings together and print the result. And it does.

This is our first brush with a thing called overloading. The + operator will do addition

if you put it between two numbers, but if you put it between two strings it will

concatenate them.

We can even create variables that hold strings:

Making a string variable is the same as making an integer one:

name = 'Rob'

We can create a string variable and print it out, just as you would expect. We can then use the

string anywhere that it would be appropriate.

I’ve used single quote characters to mark the start and the end of the string. That’s fine,

and we have seen it work. Python will also tolerate other delimiters, for example

double quote, ", which might be useful if the string you are entering contains single

quote characters. I’ll let you discover how you can create a string that contains both

kinds of delimiter.

Reading text strings

At the moment we can write Python that will let us use the machine as a calculator with a bunch of

memories. We can do things with numbers and also store and concatenate strings. Which is a start.

Fortunately we can also read from the user:

Run this statement and see if you can work out what it does. Enter a sensible number if

you happen to get asked any questions of that kind….

ageString = input('Enter your age : ')

Our Python system now contains two versions of age. One, that we entered earlier, has the name

age and is stored as a number. The other, which we have just entered, is called ageString and

contains a string.

Use Python to view the contents of the age and ageString values. See if you can

spot the difference between the two.

When Python displays the result of a string evaluation it will put single quotes around it.

Converting from a string to a value

We need a way of converting from a string of text (that the user types in) into a value (that we can

do sums with). Fortunately Python provides us with this.

The good news is that this works.

Playing with Python 5

The int method will take a string and return the integer value that the string contains:

age = int(ageString)

This should set the age to the value that you typed in a moment ago. The int method is quite picky.

If you try the following you will not get a happy ending:

age = int('kaboom')

If you enter this statement you will get another error, and quite right too.

Printing a Message

You can get a program to print an output by using the print statement

The print method will take something and print it. We will use this when we start to

write programs.

print(ageString)

Making an Adder in Python (snake humour)
We now know enough to make a program that will read in two numbers, add them together and

print out the result.

Working with Python code

At the moment we have been using the Python Shell part of IDLE to enter Python program

statements which are obeyed instantly. This is a great way to experiment with the language, but we

have discovered that if we want to run the program more than once we have to type the commands

again. You might be getting tired of typing the same things time and time again. In this section we

are going to find out how you can create and save your program files and also how you can use cut

and paste to reuse your “experimental” program code.

What we want to do is make a program that reads in two numbers and then prints out their sum.

Write out on paper a sequence of statements that get the numbers from the user and

then displays the result.

Writing Python Programs

At the moment we have been using the Python Shell part of IDLE to enter Python program

commands. This is a great way to experiment with the language, but we have discovered that if we

want to run the program more than once we have to type the commands again. We can do clever

things with copy and paste (see above) but what we really want to do is store our programs and

load them again. It turns out that we can do this in IDLE quite easily.

From within IDLE we can open up a new window where we can work on Python programs. When

we think the program might work we can then ask IDLE to run the program so that we can see

whether or not the program works properly. This is exactly what professional developers do when

they write programs.

To create a Python program the first thing you need to do is open a new Window on the desktop.

Click on the File tab on the top line of the IDLE window and select New Window from the menu

that appears. Alternatively, you can press CTRL+N.

This should cause a second window to appear on the screen, which will have the helpful title

Untitled.

Playing with Python 6

Above shows the two windows at the start of a Python development session. Unlike the Python

shell window, the program lacks the >>> prompt where you type commands. You can type lines of

Python into the new window and they are not executed. They are held as a program.

You can treat this window as any other text editor that you have used before. Think of it as a word

processor for programs. You can type in the statements you have written and then run them.

Above shows the program as it appears after being typed in. Note that the editor “colours in” some

of the words that are part of the Python language. I used the Save command on the File menu to

save the program text in a file.

You can now create Python programs and save them to work on next time. You can also email

your Python code to other people to have a look at and work with and you can run programs that

they send you. If you use the Open command from the File menu in IDLE3 you can open a file

that you have already created and work on it later.

Running Python Programs

Once you have entered the program code you can run it by opening the Run menu from the top line

and selecting Run Module from the menu. Alternatively you can press the F5 function key on

your keyboard. The first time you run a new program the system will insist that you save the

program in a file somewhere.

Playing with Python 7

This is the save request. You will see this each time you try to run the program. You must save the

file in order to be able to run it. Choose a name for the file and then save the program in that file.

Make sure that the name you use has the characters .py at the end so that the operating system

knows the file contains a Python program.

The save commands are very similar to the ones that you have seen on other computer systems.

You can move around the file store and pick somewhere to put the files.

When you save a program as a file, make sure that you add the language extension .py

(for Python) onto the end of the filename. A language extension is how the operating

system (Windows or Mac OS) knows what kind of data the file contains. If the system

can’t tell that the file is a Python program it might not work correctly when you try to

run it.

Program syntax errors

When you start the program running the IDLE environment checks your program to make sure it is

correct and then runs it in the IDLE Python shell. If you have made any mistakes you will see

these described in the shell and you will have to look in your edit window to see where the mistake

is.

If the Python runtime system doesn’t like your program it will display the error box above. This

means that you must look through your program to find out where you went wrong. There are lots

of reasons why Python might not like your program.

Rob Miles

October 2013

