
Writing Useful Programs 1 

University of Hull 
Department of Computer Science 

 
Wrestling with Python – Week 03 

Using Loops 
Vsn. 1.0 Rob Miles 2013 

Before you go onto this lab, please make sure that you have sorted out the Cinema Entry program 

from last week. This lab builds upon the program, and you need to have a working entry program 

to start form when you want to do this part. 

Repeating Behaviours 
We can now make simple programs that read in some data (film number and age), do something 

with it (decide if you can see the film or not) and display a result (print the message). Actually, this 

is the only thing that computers ever do, so we are well on the way to becoming proper 

programmers at this point. 

 

However, there is something that we need to be able to do before we can apply for a job at Google. 

We need to understand loops. 

 

We have noticed that sometimes our program wants to repeat a behaviour, either because it didn’t 

work first time (the user entered a film number that is not valid) or because we want to do 

something more than once (perhaps we want to deal with another customer). To do this we need a 

program construction that lets us repeat a set of C# program statements multiple times (perhaps we 

want to handle 100 customers), or continue performing a statement until some condition is met 

(perhaps we want to keep looping while the user gives is stupid values). 

Validating inputs 
Programmers call it “validation”. We call it “making sure you don’t get stupid values from your 

user”. In the case of the cinema entry program you will somewhere have to deal with the user 

putting in stupid numbers in two different situations, giving the film number and giving their age.  

In both these situations we want the program to keep on asking for a numeric value while the user 

gives them invalid ones. 

Validating the Film Number 

In the case of the film number we will have something like this, where what the user types is 

underlined: 

 

Welcome to our Multiplex 

We are presently showing: 

    1. Rush (15) 

    2. How I Live Now (15) 

    3. Thor: The Dark World (12A) 

    4. Filth (18) 

    5. Planes (U) 

Enter the number of the film you wish to see: 1 



Writing Useful Programs 2 

If the user makes a mistake you might find something like this: 

 

Enter the number of the film you wish to see: 10 

 

There is no film with the number 10, and so we want to reject this. In fact, if the user gives a film 

number which is less than 1 or greater than 10 we want to reject this. It turns out that we can 

combine these two tests into a single condition, using a logical or.  

 

if (filmNumber < 1 or filmNumber > 5): 

    # if we get here the film number is wrong 

else: 

    # if we get here the film number is correct 

 

Remember that if you use this code you need to use the variable you created to hold the film 

number (I called it filmNumber) in your code. 

Making Loops to Validate the film number 
You can use the above code to make an easy test for the age, but what you really want to do is loop 

around if the age is wrong. You want to do the read operation while the number given is wrong. 

To do this we can use the rather aptly named do-while loop. 

 

filmNumber =-1 # set the film number to an invalid value 

 

while(filmNumber < 1 or filmNumber > 5): 

    # read the film number in from the user 

    filmNumber = int(filmString) 

This loop will go round until the user types in a valid film number value. In other words, as long as 

the condition is true, this loop will repeat.  

 

Now that we know about loops we can modify our program to repeatedly request film number 

values until the user enters a valid one. 

 

 

Before you go any further; perform the following: 

1. Modify your cinema program from last time so that it refuses to accept a film 

number which is outside the range 1 to 5. 

2. Use the same technique to ensure that ages are entered in the range 5 to 120. These 

are the minimum and maximum age values that the cinema manager wants you to 

use. 

Making your program user friendly 
Ideally your program should give messages to tell the user that they have done something wrong: 

 



Writing Useful Programs 3 

 

Welcome to our Multiplex 

We are presently showing: 

    1. Rush (15) 

    2. How I Live Now (15) 

    3. Thor: The Dark World (12A) 

    4. Filth (18) 

    5. Planes (U) 

Enter the number of the film you wish to see: 10 

That film number is invalid. 

Enter the number of the film you wish to see: 

 

It would be nice if you could improve your program to do this.  

 

 

Before you go any further; perform the following: 

3. Modify the program so that it produces an error message if the user gives a value 

which is out of range. One way to do this is to repeat the test in the program. The 

first test produces the message if the input is invalid and the other test controls the 

loop. 

4. If you are feeling ambitious you can take a look at the break keyword and see if 

you can use this to make a version which only does the test once.  

Putting a Loop inside a Loop 
The program we are writing should actually run continuously, in other words it should not stop 

after it has run once. We can get this effect by putting a loop around the entire program which will 

repeat it until the user says stop: 

 

Another customer? (y or n): y 

Welcome to our Multiplex 

... 

This version of the program asks the user if they want to process another customer. If the answer is 

Y the program will go round again. The program layout will look a bit like this: 

 

while(loopActive): 

# process one customer 

print('Process a customer') 

repeatString = input('Another customer> (y or n): ') 

if ( repeatString == 'n'): 

    loopActive=False 

It is perfectly OK for us to put loops inside loops, but remember to use the indenting 
correctly so that the statements are repeated in the right way. 

Rob Miles 

November 2013 


