
Simple Python Wrestling



Overview

• How to talk Python

• Storing Data 

• Making Decisions

• Looping the loops

• Collecting data in, er, collections

• Methods and madness
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What is Python?

• Python has been around for a while

• It was invented by Guido van Rossum as a 
general purpose scripting language which 
supports a wide range of programming 
styles and techniques

• It is named after the TV show

– Of course
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What is Python?

• Python is a scripting language that you 
can use to write programs

– A scripting language is used to give 
commands to an interpreter that then acts on 
each command

• This not quite the same as some 
programming languages which are 
converted into low level instructions
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Learning Python

• Python is great to learn
– But there are some pitfalls

• Like everything else to do with computers, 
you would think that everything was there 
for the best possible reason and works in 
the best possible way
– This is not necessarily always the case though

– We just have to deal with this
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Python Versions

• Python has now reached Version 3.n
– But there is a large legacy of Python code out 

there that is based on Version 2.n

• This is not an issue for the purpose of this 
course, because everything we will mention 
runs on both versions

• But you may need to remember this when 
looking at existing code
– We are going to use Version 3.3.2
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Getting Python

• You can download Python from 

– http://www.python.org/download/

• You just need to run the MSI installer 
package
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Python Installer

• Install for all 
users and 
select the 
default 
destination 
directory
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Running Python

• When you install python you get a number 
of things

– Python command line

– IDLE Python development environment

• We are going to do everything in IDLE 

• This is where we will write, run and save 
our programs
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Starting Idle

• Once you have installed Idle 
you can just start it in the usual 
way

• The program will open and 
display the “Python Shell”
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The Python Shell in Idle
• The “Python shell” 

is where we can 
type Python 
statements and 
have them obeyed 
instantly
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PRACTICAL BREAK 1

Data Processing with Python
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What we learned

• The Python shell lets us enter statements 
and have them obeyed instantly

• Python stores information (numbers and 
text) in named locations 

• We can write expressions that change the 
information Python stores

• We can use input and print to 
communicate with the program users



A PYTHON PROGRAM
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Sums

• This program reads in two numbers, adds 
them together and then prints out the result



Sums

• Ask for the first number and read it in as a 
string



Sums

• Convert the string into an integer which 
we can do sums with



Sums

• Ask for the second number and convert 
that into a second integer 



Sums

• Do the sum



Sums

• Display the result



A WORD ABOUT 
COMMENTS
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Writing Software

• It is important when you write software 
that you ensure that you do it well

• A “good” program is not just one that 
works – although this does of course help

• For a program to be properly useful it is 
also important to ensure that it is well 
written

28-Jan-14Making Decisions 22



Well Written Code

• Easy to read 

– All the names in the text should add meaning

• Clean and consistent layout

– The same format for common constructions

• Well managed

– It should be clear who wrote the code and the 
reasons for any changes
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Comments

• One way to add a lot of value to a program 
is to add comments

– We already do this with sensible variable 
names, but comments allow even more detail

• A comment is something that the compiler 
completely ignores

– It is only for use by the programmer

28-Jan-14Making Decisions 24



Creating a Comment

• The character # means the start of a 

comment

28-Jan-14Making Decisions 25



Line Comments

• The character sequence # starts a 
comment that extends to the end of the 
line

• You can use these to quickly explain what 
a statement is doing
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x=0 # start at the left hand edge



Stupid Comments

• Comments should add value

• They should not just replicate information 
that a programmer should know already
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count = count + 1 # add 1 to count



Comments are cool

• Make sure that you use comments

• At least put your name and the date at the 
top

• That way you can convince yourself that 
you actually wrote the code when you look 
at it six months later….
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IDLE PROGRAMS
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Programs and shells

• At the moment we have just typed Python 
statements into the shell and they have 
been obeyed

• This is fine, but what we really want is a 
Python program that we can just run when 
we need it

• This is how PC programs work
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Editing a Program 

• What we want to do is write some Python 
statements and then have them executed 
for us

• We can’t use the shell for this, we need an 
edit window where we write our code
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Opening an Edit Window

• The File menu 
in Idle lets us 
create a new 
Window where 
we can write 
our program
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The Edit Window

• Think of the edit window as a “word 
processor” for program code
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Running a Program

• When we want to run a program we select 
the Run command from the edit window
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Save before Run

• Before you run a 
program it needs 
to be saved in a 
file 

• The Python 
system will then 
read this file and 
run it
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Saving a Python Program

• You can store the 
program anywhere 
you like

• It will have the 
language extension 
“.py” so that the 
system knows it is 
a Python program
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Running the Program

• The program runs 
inside the Python 
shell

• If you double click 
the source file it will 
run in the shell 
automatically
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PRACTICAL BREAK 2

Making an Adder with Python
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MAKING DECISIONS
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Program Flow

• At the moment every program we have 
written has just run through its statements 
in sequence

• This form of linear program flow is not 
always what you want

• The power of computer programs is that 
they can make decisions
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The Three Types of Flow

1. Straight line:

Perform one statement after another

2. Decision:

Choose a statement based on a given condition

3. Loop

Repeat statements based on a given condition
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Double Glazing Program 

• We are going to consider a program we are 
writing for a customer

– Read in height and width of window

– Print out area and length of glass to buy

• This might even be useful

• Before we can write the program we need 
to go find some metadata
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What is Metadata?

• Metadata is data about data

– Limits (maximum and minimum values)

– Units (measured in metres, gallons, years)

• It gives a proper context for what the 
program is doing

• You have to gather the Metadata before
you write the program
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Where does Metadata come from?

• It must come from the customer

– They are the only people who can tell you 
about their business

• Only the double glazing salesman knows 
that he measure his windows in meters

• If you assume that he uses feet and inches 
you will supply a useless program
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Getting Metadata

• You need to go out and ask the customer 
for this information

• They will not necessarily think to tell you

• Two assumptions that lead to disaster
– Customer assumes you know the units

– You assume the customer measures his 
windows in feet

• Result = FAIL

28-Jan-14Chapter 6.1 : Conditions 45



Double Glazing Metadata

• This is the metadata that drives our value 
inputs for the double glazing program

• I have written it as a comment 
– This is not accidental
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# Window sizes measured in meters
#  Invalid values:
# width less than 0.5 metres
#   width greater than 5.0 metres
# height less than 0.75 metres
# height greater than 3.0 metres



Conditional Execution - if

• The if statement lets a program react in a 
particular way to data it receives

• This allows us to use metadata in our 
programs to make them more effective

– The double glazing program could reject 
widths and heights that are incorrect

– This will protect us from lawsuits..
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Conditional Statement

• This is the general form of the Python 
conditional statement

• The condition is an expression that returns 
a boolean result – True or False
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if (condition):
statement we do if condition is true

else:
statement we do if condition is false



Relational Operators

• We have seen how a operators can be used in 
arithmetic expressions to produce numeric 
results

• We can use relational operators  in 
expressions to produce boolean results which 
are true or false
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height > 3.0 

2 * ( width + height ) * 3.25 



Testing the height upper limit

• This test validates the upper bound of the 
height value

• Note that it doesn’t check for heights 
which are to small or negative
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if (height > 3.0):
print('Too high')

else:
print('OK')



Missing off the else part

• If you don’t need the else part you can 
leave it out

• Whether you have an else part depends on 
what you are trying to achieve with the 
code

– Don’t feel obliged to add one
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if (height > 3.0):

print('Too high')



Relational Operators

• You use relational operators to perform 
comparisons

• A relational operator works between two 
numeric operands 

• It returns a boolean result which is either 
True or False
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== operator

• The == operator returns true if the two 

operands are equal

• Note that this is not the same as the =

operator, which performs assignment
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if ( age == 21 ): 
print ('Happy 21st')



== operator and Floating Point

• Because floating point values can’t be held 
exactly it is very dangerous to compare 
them for equality

• The condition may be unreliable because 
of errors in calculation
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if ( average == 1.0f ): 
print ('Average of 1')



== operator and strings

• We can compare strings for equality

• The comparison is case sensitive

– The string "rob" would not be recognised by 

the above code

28-Jan-14Chapter 6.1 : Conditions 55

if ( name == 'Rob' ):
print ('Hello Rob')



The != operator

• The != (not equals) operator returns true if 
the operands are not equal to each other

• This can be used in the same way as the 
== operator
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if ( name != 'Rob' ):
print ('You are not Rob')



The < and > operators

• The < and > operators test for less-than 
and greater-than respectively

• Note that if the operands are equal  the 
result is not true
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if (width < 0.5 ):
print ('width too low')



The <= and >= operators

• These work like < and >, but also include 
the case where the two are equal

• To invert a < you have to use a >= 

• The code above inverts the previous test
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if (width >= 0.5 ):
print ('not too low')



The ! operator

• The not operator can be used to invert a 
boolean value

• It works on one operand or expression in 
brackets
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if ( not False ) 
print ('not false is true')



Combining Logical Operators

• Sometimes a program needs to combine a 
number of logical expressions
– If the height is too wide or the height is too 

high

• Python provides operators that can be 
used in this way:
and for logical and

or for logical or
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Testing both height limits

• The Logical Operator or  can be used to 
combine two conditions

• If one or other of the conditions is true the 
operator will return true
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if (height > 3 or height < 0.5):

print('height invalid')

else:

print('height OK')



Inverting the Condition

• This test inverts the condition to return 
true if the height is valid

• Note we have to invert the conditions and 
change the logical operator
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if (height <= 3 and height >= 0.5):

print('height valid')



Creating Blocks

• All the statements that are indented 
‘underneath’ the if statement are 
controlled by that statement 

• This is how Python does “blocks”
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if ( height > 5 ):

print('height restricted')

height = 5



Creating Blocks

• The print message is always obeyed 
because it is not indented like the other 
two
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if ( height > 5 ):

print('height restricted')

height = 5

print('This message is always printed')



Indenting Pain

• Python is one of the few languages that 
uses this indenting technique to show how 
code is controlled by conditions

• Other languages use brackets to mark the 
start and the end

• But in Python you must get your 
indenting right or code will fail
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PRACTICAL BREAK 3

The Cinema Entry Program
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What we learned

• Programs use the if construction to make  
decisions based on the values they are 
working with

• The if construction can make use of 
combinations of conditions

• The if construction can control a number 
of statements by using indenting



REPEATING WITH LOOPS
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Loops

• We create a loop so that we can repeat one 
or more statements 

• A condition is used to determine whether 
or not the loop stops

• The condition is either true or false, just 
like that used in an if construction

Repeating with Loops



THE WHILE LOOP
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The While loop

• Sometimes you want a loop that will 
repeat while a condition is true

– Read numbers from the user while they keep 
typing in ones that are not valid

• The Python language has a while 
construction that will do this for us

– This repeats statements while a condition is 
true 
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A Stupid while Loop

• We can write never ending loops if we like:

• This loop will never finish (use CTRL+C to 
kill a program if you ever write this)..

while(True):

print('hello')

Repeating with Loops
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A counting while loop

• while continues while the condition is true

• The end condition is tested each time round the loop 
and at the start of the loop

• We can use indenting to get more than one 
statement repeated

i=0

while(i<5):

print('hello')

i=i+1

Repeating with Loops
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Reading in Numbers using While

• This will repeatedly read the width value 
until a valid one is entered
– The condition is one we have seen before

width = -1

while(width < 0.5 or width > 10.0):

widthString = input('Enter the width :')

width = int(widthString)

print('Valid width entered: ',width)

Repeating with Loops
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For loops

• We have already seen how we can create 
code which will repeat something a 
particular number of times

• However, since this is something that we 
need to do a lot, Python provides a special 
constructions for this, the for loop

Repeating with Loops



PRACTICAL BREAK 4

Rejecting Invalid Values using a while loop
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THE FOR LOOP
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The For loop 

• The for loop has the following form:

• The variable i is given each value in the range 

• The loop stops when i reaches the last value 
in the range (note that the value 10 is not in 
the range)

for i in range (1,10):

print(i)

Repeating with Loops
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A working For Loop

• This will print out Hello 10 
times

• When the value in i reaches 

10 the loop stops

for i in range (0,10):

print('Hello', i)

Repeating with Loops

Hello 0
Hello 1
Hello 2
Hello 3
Hello 4
Hello 5
Hello 6
Hello 7
Hello 8
Hello 9
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Iterating through other items

• This will go round the loop 
once for each character in 
the string

• A string is a collection of 
items

for i in 'Chicken':

print('Hello', i)

Repeating with Loops

Hello C
Hello h
Hello i
Hello c
Hello k
Hello e
Hello n



For Loops in Python

• A For loop in Python is really something 
that works through a range of values

• That range can be created as a sequence of 
numbers (that is what we did first)

• Alternatively it can be a collection of items

– A string can be regarded as a collection of 
characters
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Breaking out of  loop

• You can use the break keyword to break 
out of a loop early

• This works in for loops or while loops

for i in 'Chicken':
print('Hello', i)
if ( i=='k'):

break
print('done')

Repeating with Loops

Hello C
Hello h
Hello i
Hello c
Hello k
done
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Iterating through other items

• You can use the continue keyword to end 
an iteration early

– In this case we don’t print the ‘k’

• This works in for loops or while loops

for i in 'Chicken':

if ( i=='k'):

continue

print('Hello', i)

Repeating with Loops

Hello C
Hello h
Hello i
Hello c
Hello e
Hello n



PRACTICAL BREAK 5

Printing rectangles of squares
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Summary

• Loops let us repeat statements while a 
condition is true

• We can also repeat statements for each 
element in a collection

• We can break out of a loop if we want

• We can put one loop inside another
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