
Simple Python Wrestling



Overview

• How to talk Python

• Storing Data 

• Making Decisions

• Looping the loops

• Collecting data in, er, collections

• Methods and madness

28-Jan-14Starting with Python 2



What is Python?

• Python has been around for a while

• It was invented by Guido van Rossum as a 
general purpose scripting language which 
supports a wide range of programming 
styles and techniques

• It is named after the TV show

– Of course

28-Jan-14Starting with Python 3



What is Python?

• Python is a scripting language that you 
can use to write programs

– A scripting language is used to give 
commands to an interpreter that then acts on 
each command

• This not quite the same as some 
programming languages which are 
converted into low level instructions

28-Jan-14Starting with Python 4



Learning Python

• Python is great to learn
– But there are some pitfalls

• Like everything else to do with computers, 
you would think that everything was there 
for the best possible reason and works in 
the best possible way
– This is not necessarily always the case though

– We just have to deal with this

28-Jan-14Starting with Python 5



Python Versions

• Python has now reached Version 3.n
– But there is a large legacy of Python code out 

there that is based on Version 2.n

• This is not an issue for the purpose of this 
course, because everything we will mention 
runs on both versions

• But you may need to remember this when 
looking at existing code
– We are going to use Version 3.3.2

28-Jan-14Starting with Python 6



Getting Python

• You can download Python from 

– http://www.python.org/download/

• You just need to run the MSI installer 
package

28-Jan-14Starting with Python 7



Python Installer

• Install for all 
users and 
select the 
default 
destination 
directory

28-Jan-14Starting with Python 8



Running Python

• When you install python you get a number 
of things

– Python command line

– IDLE Python development environment

• We are going to do everything in IDLE 

• This is where we will write, run and save 
our programs

28-Jan-14Starting with Python 9



Starting Idle

• Once you have installed Idle 
you can just start it in the usual 
way

• The program will open and 
display the “Python Shell”

28-Jan-14Starting with Python 10



The Python Shell in Idle
• The “Python shell” 

is where we can 
type Python 
statements and 
have them obeyed 
instantly

28-Jan-14Starting with Python 11



PRACTICAL BREAK 1

Data Processing with Python

28-Jan-14Starting with Python 12



What we learned

• The Python shell lets us enter statements 
and have them obeyed instantly

• Python stores information (numbers and 
text) in named locations 

• We can write expressions that change the 
information Python stores

• We can use input and print to 
communicate with the program users



A PYTHON PROGRAM

28-Jan-14Making Decisions 14



Sums

• This program reads in two numbers, adds 
them together and then prints out the result



Sums

• Ask for the first number and read it in as a 
string



Sums

• Convert the string into an integer which 
we can do sums with



Sums

• Ask for the second number and convert 
that into a second integer 



Sums

• Do the sum



Sums

• Display the result



A WORD ABOUT 
COMMENTS

28-Jan-14Making Decisions 21



Writing Software

• It is important when you write software 
that you ensure that you do it well

• A “good” program is not just one that 
works – although this does of course help

• For a program to be properly useful it is 
also important to ensure that it is well 
written

28-Jan-14Making Decisions 22



Well Written Code

• Easy to read 

– All the names in the text should add meaning

• Clean and consistent layout

– The same format for common constructions

• Well managed

– It should be clear who wrote the code and the 
reasons for any changes

28-Jan-14Making Decisions 23



Comments

• One way to add a lot of value to a program 
is to add comments

– We already do this with sensible variable 
names, but comments allow even more detail

• A comment is something that the compiler 
completely ignores

– It is only for use by the programmer

28-Jan-14Making Decisions 24



Creating a Comment

• The character # means the start of a 

comment

28-Jan-14Making Decisions 25



Line Comments

• The character sequence # starts a 
comment that extends to the end of the 
line

• You can use these to quickly explain what 
a statement is doing

28-Jan-14Making Decisions 26

x=0 # start at the left hand edge



Stupid Comments

• Comments should add value

• They should not just replicate information 
that a programmer should know already

28-Jan-14Making Decisions 27

count = count + 1 # add 1 to count



Comments are cool

• Make sure that you use comments

• At least put your name and the date at the 
top

• That way you can convince yourself that 
you actually wrote the code when you look 
at it six months later….

28-Jan-14Making Decisions 28



IDLE PROGRAMS

28-Jan-14Starting with Python 29



Programs and shells

• At the moment we have just typed Python 
statements into the shell and they have 
been obeyed

• This is fine, but what we really want is a 
Python program that we can just run when 
we need it

• This is how PC programs work

28-Jan-14Starting with Python 30



Editing a Program 

• What we want to do is write some Python 
statements and then have them executed 
for us

• We can’t use the shell for this, we need an 
edit window where we write our code

28-Jan-14Starting with Python 31



Opening an Edit Window

• The File menu 
in Idle lets us 
create a new 
Window where 
we can write 
our program

28-Jan-14Starting with Python 32



The Edit Window

• Think of the edit window as a “word 
processor” for program code

28-Jan-14Starting with Python 33



Running a Program

• When we want to run a program we select 
the Run command from the edit window

28-Jan-14Starting with Python 34



Save before Run

• Before you run a 
program it needs 
to be saved in a 
file 

• The Python 
system will then 
read this file and 
run it

28-Jan-14Starting with Python 35



Saving a Python Program

• You can store the 
program anywhere 
you like

• It will have the 
language extension 
“.py” so that the 
system knows it is 
a Python program

28-Jan-14Starting with Python 36



Running the Program

• The program runs 
inside the Python 
shell

• If you double click 
the source file it will 
run in the shell 
automatically

28-Jan-14Starting with Python 37



PRACTICAL BREAK 2

Making an Adder with Python

28-Jan-14Starting with Python 38



MAKING DECISIONS

28-Jan-14Making Decisions 39



Program Flow

• At the moment every program we have 
written has just run through its statements 
in sequence

• This form of linear program flow is not 
always what you want

• The power of computer programs is that 
they can make decisions

28-Jan-14Chapter 6.1 : Conditions 40



The Three Types of Flow

1. Straight line:

Perform one statement after another

2. Decision:

Choose a statement based on a given condition

3. Loop

Repeat statements based on a given condition

28-Jan-14Chapter 6.1 : Conditions 41



Double Glazing Program 

• We are going to consider a program we are 
writing for a customer

– Read in height and width of window

– Print out area and length of glass to buy

• This might even be useful

• Before we can write the program we need 
to go find some metadata

28-Jan-14Chapter 6.1 : Conditions 42



What is Metadata?

• Metadata is data about data

– Limits (maximum and minimum values)

– Units (measured in metres, gallons, years)

• It gives a proper context for what the 
program is doing

• You have to gather the Metadata before
you write the program

28-Jan-14Chapter 6.1 : Conditions 43



Where does Metadata come from?

• It must come from the customer

– They are the only people who can tell you 
about their business

• Only the double glazing salesman knows 
that he measure his windows in meters

• If you assume that he uses feet and inches 
you will supply a useless program

28-Jan-14Chapter 6.1 : Conditions 44



Getting Metadata

• You need to go out and ask the customer 
for this information

• They will not necessarily think to tell you

• Two assumptions that lead to disaster
– Customer assumes you know the units

– You assume the customer measures his 
windows in feet

• Result = FAIL

28-Jan-14Chapter 6.1 : Conditions 45



Double Glazing Metadata

• This is the metadata that drives our value 
inputs for the double glazing program

• I have written it as a comment 
– This is not accidental

28-Jan-14Chapter 6.1 : Conditions 46

# Window sizes measured in meters
#  Invalid values:
# width less than 0.5 metres
#   width greater than 5.0 metres
# height less than 0.75 metres
# height greater than 3.0 metres



Conditional Execution - if

• The if statement lets a program react in a 
particular way to data it receives

• This allows us to use metadata in our 
programs to make them more effective

– The double glazing program could reject 
widths and heights that are incorrect

– This will protect us from lawsuits..

28-Jan-14Chapter 6.1 : Conditions 47



Conditional Statement

• This is the general form of the Python 
conditional statement

• The condition is an expression that returns 
a boolean result – True or False

28-Jan-14Chapter 6.1 : Conditions 48

if (condition):
statement we do if condition is true

else:
statement we do if condition is false



Relational Operators

• We have seen how a operators can be used in 
arithmetic expressions to produce numeric 
results

• We can use relational operators  in 
expressions to produce boolean results which 
are true or false

28-Jan-14Chapter 6.1 : Conditions 49

height > 3.0 

2 * ( width + height ) * 3.25 



Testing the height upper limit

• This test validates the upper bound of the 
height value

• Note that it doesn’t check for heights 
which are to small or negative

28-Jan-14Chapter 6.1 : Conditions 50

if (height > 3.0):
print('Too high')

else:
print('OK')



Missing off the else part

• If you don’t need the else part you can 
leave it out

• Whether you have an else part depends on 
what you are trying to achieve with the 
code

– Don’t feel obliged to add one

28-Jan-14Chapter 6.1 : Conditions 51

if (height > 3.0):

print('Too high')



Relational Operators

• You use relational operators to perform 
comparisons

• A relational operator works between two 
numeric operands 

• It returns a boolean result which is either 
True or False

28-Jan-14Chapter 6.1 : Conditions 52



== operator

• The == operator returns true if the two 

operands are equal

• Note that this is not the same as the =

operator, which performs assignment

28-Jan-14Chapter 6.1 : Conditions 53

if ( age == 21 ): 
print ('Happy 21st')



== operator and Floating Point

• Because floating point values can’t be held 
exactly it is very dangerous to compare 
them for equality

• The condition may be unreliable because 
of errors in calculation

28-Jan-14Chapter 6.1 : Conditions 54

if ( average == 1.0f ): 
print ('Average of 1')



== operator and strings

• We can compare strings for equality

• The comparison is case sensitive

– The string "rob" would not be recognised by 

the above code

28-Jan-14Chapter 6.1 : Conditions 55

if ( name == 'Rob' ):
print ('Hello Rob')



The != operator

• The != (not equals) operator returns true if 
the operands are not equal to each other

• This can be used in the same way as the 
== operator

28-Jan-14Chapter 6.1 : Conditions 56

if ( name != 'Rob' ):
print ('You are not Rob')



The < and > operators

• The < and > operators test for less-than 
and greater-than respectively

• Note that if the operands are equal  the 
result is not true

28-Jan-14Chapter 6.1 : Conditions 57

if (width < 0.5 ):
print ('width too low')



The <= and >= operators

• These work like < and >, but also include 
the case where the two are equal

• To invert a < you have to use a >= 

• The code above inverts the previous test

28-Jan-14Chapter 6.1 : Conditions 58

if (width >= 0.5 ):
print ('not too low')



The ! operator

• The not operator can be used to invert a 
boolean value

• It works on one operand or expression in 
brackets

28-Jan-14Chapter 6.1 : Conditions 59

if ( not False ) 
print ('not false is true')



Combining Logical Operators

• Sometimes a program needs to combine a 
number of logical expressions
– If the height is too wide or the height is too 

high

• Python provides operators that can be 
used in this way:
and for logical and

or for logical or

28-Jan-14Chapter 6.1 : Conditions 60



Testing both height limits

• The Logical Operator or  can be used to 
combine two conditions

• If one or other of the conditions is true the 
operator will return true

28-Jan-14Chapter 6.1 : Conditions 61

if (height > 3 or height < 0.5):

print('height invalid')

else:

print('height OK')



Inverting the Condition

• This test inverts the condition to return 
true if the height is valid

• Note we have to invert the conditions and 
change the logical operator

28-Jan-14Chapter 6.1 : Conditions 62

if (height <= 3 and height >= 0.5):

print('height valid')



Creating Blocks

• All the statements that are indented 
‘underneath’ the if statement are 
controlled by that statement 

• This is how Python does “blocks”

28-Jan-14Chapter 6.1 : Conditions 63

if ( height > 5 ):

print('height restricted')

height = 5



Creating Blocks

• The print message is always obeyed 
because it is not indented like the other 
two

28-Jan-14Chapter 6.1 : Conditions 64

if ( height > 5 ):

print('height restricted')

height = 5

print('This message is always printed')



Indenting Pain

• Python is one of the few languages that 
uses this indenting technique to show how 
code is controlled by conditions

• Other languages use brackets to mark the 
start and the end

• But in Python you must get your 
indenting right or code will fail

28-Jan-14Making Decisions 65



PRACTICAL BREAK 3

The Cinema Entry Program

28-Jan-14Starting with Python 66



What we learned

• Programs use the if construction to make  
decisions based on the values they are 
working with

• The if construction can make use of 
combinations of conditions

• The if construction can control a number 
of statements by using indenting



REPEATING WITH LOOPS



28-Jan-14 69

Loops

• We create a loop so that we can repeat one 
or more statements 

• A condition is used to determine whether 
or not the loop stops

• The condition is either true or false, just 
like that used in an if construction

Repeating with Loops



THE WHILE LOOP

28-Jan-14Repeating with Loops 70



The While loop

• Sometimes you want a loop that will 
repeat while a condition is true

– Read numbers from the user while they keep 
typing in ones that are not valid

• The Python language has a while 
construction that will do this for us

– This repeats statements while a condition is 
true 



28-Jan-14 72

A Stupid while Loop

• We can write never ending loops if we like:

• This loop will never finish (use CTRL+C to 
kill a program if you ever write this)..

while(True):

print('hello')

Repeating with Loops



28-Jan-14 73

A counting while loop

• while continues while the condition is true

• The end condition is tested each time round the loop 
and at the start of the loop

• We can use indenting to get more than one 
statement repeated

i=0

while(i<5):

print('hello')

i=i+1

Repeating with Loops



28-Jan-14 74

Reading in Numbers using While

• This will repeatedly read the width value 
until a valid one is entered
– The condition is one we have seen before

width = -1

while(width < 0.5 or width > 10.0):

widthString = input('Enter the width :')

width = int(widthString)

print('Valid width entered: ',width)

Repeating with Loops



28-Jan-14 75

For loops

• We have already seen how we can create 
code which will repeat something a 
particular number of times

• However, since this is something that we 
need to do a lot, Python provides a special 
constructions for this, the for loop

Repeating with Loops



PRACTICAL BREAK 4

Rejecting Invalid Values using a while loop

28-Jan-14Starting with Python 76



THE FOR LOOP

28-Jan-14Repeating with Loops 77



28-Jan-14 78

The For loop 

• The for loop has the following form:

• The variable i is given each value in the range 

• The loop stops when i reaches the last value 
in the range (note that the value 10 is not in 
the range)

for i in range (1,10):

print(i)

Repeating with Loops



28-Jan-14 79

A working For Loop

• This will print out Hello 10 
times

• When the value in i reaches 

10 the loop stops

for i in range (0,10):

print('Hello', i)

Repeating with Loops

Hello 0
Hello 1
Hello 2
Hello 3
Hello 4
Hello 5
Hello 6
Hello 7
Hello 8
Hello 9



28-Jan-14 80

Iterating through other items

• This will go round the loop 
once for each character in 
the string

• A string is a collection of 
items

for i in 'Chicken':

print('Hello', i)

Repeating with Loops

Hello C
Hello h
Hello i
Hello c
Hello k
Hello e
Hello n



For Loops in Python

• A For loop in Python is really something 
that works through a range of values

• That range can be created as a sequence of 
numbers (that is what we did first)

• Alternatively it can be a collection of items

– A string can be regarded as a collection of 
characters

28-Jan-14Repeating with Loops 81



28-Jan-14 82

Breaking out of  loop

• You can use the break keyword to break 
out of a loop early

• This works in for loops or while loops

for i in 'Chicken':
print('Hello', i)
if ( i=='k'):

break
print('done')

Repeating with Loops

Hello C
Hello h
Hello i
Hello c
Hello k
done



28-Jan-14 83

Iterating through other items

• You can use the continue keyword to end 
an iteration early

– In this case we don’t print the ‘k’

• This works in for loops or while loops

for i in 'Chicken':

if ( i=='k'):

continue

print('Hello', i)

Repeating with Loops

Hello C
Hello h
Hello i
Hello c
Hello e
Hello n



PRACTICAL BREAK 5

Printing rectangles of squares

28-Jan-14Starting with Python 84



Summary

• Loops let us repeat statements while a 
condition is true

• We can also repeat statements for each 
element in a collection

• We can break out of a loop if we want

• We can put one loop inside another

28-Jan-14Methods 85


