Sensing the world with Kinect 2

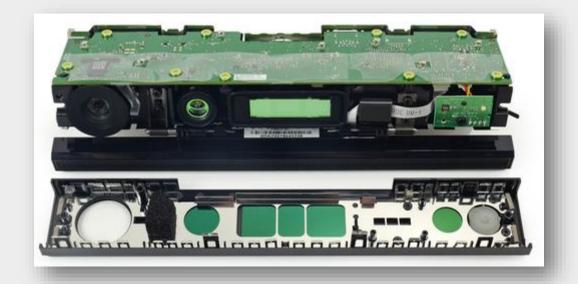
Rob Miles

The V1 Kinect Sensor

- Microsoft Kinect was released in 2011 as a new kind of controller for the Xbox 360
- Fastest selling gadget of all time
- Later released as a PC accessory

Kinect V1 Sensor

- The original Kinect contained two cameras, an infra-red projector and four microphones
- It is connected to the PC via a USB 2 port


The V2 Kinect Sensor

- Version 2 of the Kinect Sensor was launched with the Xbox One console
- Needs a USB 3 connection now...

Kinect V2 Sensors

 The Kinect V2 builds on the previous device and adds an infra-red camera to the device

What does the Kinect 2 do?

- There are loads of sensors in the Kinect 2
 - High quality colour video camera
 - Infra-Red (see in the dark) camera
 - Depth camera
 - Skeleton tracking
 - Four microphones for sound tracking
- These can be used from C# programs using the Kinect libraries in the SDK

The Kinect Video Camera

- The Kinect contains a high quality video camera with a wide field of view
- This will produce 1920x1080 high resolution video with a very wide field of view
- We can play with this in code

DEMO 01

Ghost Camera

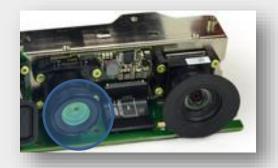
15-Oct-14

Working with Video Data

- You can regard a video image as an array of a very large number of 8 bit values
 - Red intensity
 - Green intensity
 - Blue intensity
 - "Alpha" intensity

Alpha data

- Red, Green and Blue make sense, but what is alpha?
- Alpha is how "transparent" the image is
 - An alpha value of o means you can see through it
 - An alpha value of 255 means the image is opaque
- You would use this when layering images


Image data and Programs

 The program creates an array of values and then this is converted into an image for display

The Kinect Infra-Red Camera

- The Kinect V2 also contains an infra-red camera
- This allows it to see in the dark with 512x424 resolution
- The Kinect contains some powerful infra-red emitters to light up the scene in front of the sensor

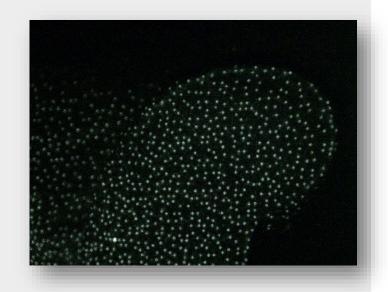
DEMO 02

Infra Red Camera

The Kinect Depth Sensor

- What makes the Kinect really interesting however is the "depth" sensor
- This allows the device to see in 3D and make sense of the world in front of it
- Software can use the depth map of the view to detect and track people in front of the sensor

View from the Depth Sensor



- The image on the right shows the depth camera view of a scene
- The sensor projects an array of infra-red dots onto the scene in front of it

From Dots to Depth

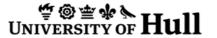
- The pattern of dots that is used to measure depth may look random but it is repeatable
- The further away the dot is reflected, the more it is displaced in the image the camera sees

Depth Camera Limitations

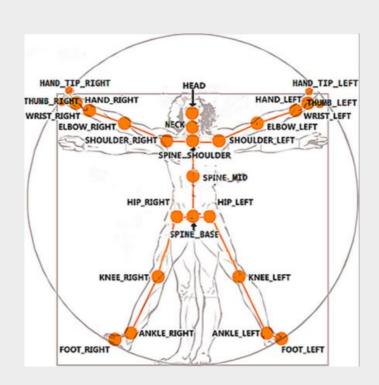
- Because of the way the camera works some parts of the scene will be in "shadow" and their distance can't be measured
 - These are shown as having a distance value of o
- The resolution of the camera reduces as objects get further away from the sensor
 - The camera interpolates distances between the points that are reflected

Kinect 2 vs Kinect 1 depth sensor

- The Kinect 1 used a special lens to produce the infra red dots
- The Kinect 2 uses multiple IR emitters and rapidly switches between them to allow the use of different dot patterns
- This improves the resolution threefold
 - Can now do finger tracking and detect if a hand is open or closed

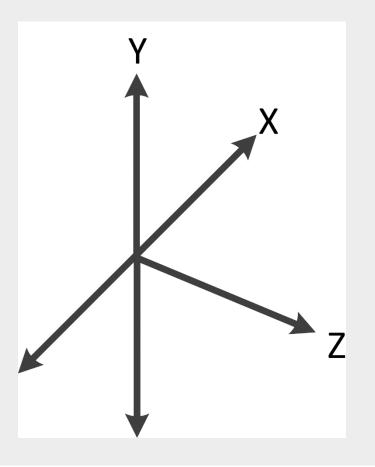

DEMO 03

Carbonizer


Kinect Skeleton Tracking

- The Kinect SDK uses the depth information to track the position of people in front of the sensor
- The software can track up to 6 people
 - It can now work if they are sitting as well as standing

Kinect Skeleton Data


- A Kinect skeleton is made up of 25 joints connected by "bones"
- Each joint is positioned in 3D space relative to the Kinect sensor

Kinect Joint Data

- The position of each joint is given as an offset from the Kinect sensor
 - X is left-right
 - Y is up-down
 - Z is away from the sensor
- The values are given in mm

Using Body Data

- A program can use the body data as positions in 3D space
- Alternatively the joint positions can be mapped into the 2D depth frame or colour frame coordinate space

Detecting Gestures

• This method use trigonometry to measure the distance between two joints

Tin Head

 This plays a ding sound when a person touches their head with their right hand

DEMO 04

Kinect Tin Head

Other Uses

- You can use a Kinect to create augmented reality, isolating players from a background
- You can use the directional microphones to track sounds and eliminate background noise
- You can mount Kinect on robots and make them able to navigate by themselves

DEMO 05

SDK Browser and Kinect Fusion

15-Oct-14

Playing with Kinect

- You can buy a Kinect sensor for Windows which will work with a PC
- You'll need a fast USB3 port for it to work best
- The Kinect SDK is a free download

Old vs New

- If you have an old Kinect sensor you can have quite a bit of fun using it with a PC
- There is also a "Kinect for Windows" device based on the old platform

Old vs New

- If you have an old Kinect sensor you can have quite a bit of fun using it with a PC
- There is also a "Kinect for Windows" device based on the old platform
- I recommend this book...

Resources

www.microsoft.com/en-us/kinectforwindows/

Also available....

www.robmiles.com