
Wrestling with Python - 2015
Unit testing
Objective
The aim of this exercise is to understand how to write unit tests for a piece of existing Python code.

Main Program
Create a new project in Pycharm. Click File -> New Project. Give the project a name e.g. Unit test 1.

Check the project name displayed in the top left corner of the screen.

Create a new Python file in the project and name it task1.py. In the project window (left hand side

of the screen), right click on the Unit test 1 and select New -> Python File.

Copy the following code into the new file:

import random

def rollDie(numOfSides):

 return random.randint(1, numOfSides)

def validateNumberOfSides(value, maxNumOfSide):

 numOfSides = int(value)

 if (numOfSides <=1) or (numOfSides > maxNumOfSide):

 return 0

 else:

 return numOfSides

def inputDie(maxNumOfSide):

 numOfSides = input('Enter the number of sides on the die ')

 return validateNumberOfSides(numOfSides, maxNumOfSide)

def main():

 print ('Welcome to random dice')

 numOfSides = inputDie(20)

 while numOfSides>0:

 score = rollDie(numOfSides)

 print(numOfSides, 'sided dice thrown, score', score)

 numOfSides = inputDie(20)

 print ('Goodbye')

if __name__ == '__main__':

 main()

Familiarise yourself with the code. It is one possible solution to OCR task 1.

The lines:
if __name__ == '__main__':

 main()

Tells Python which function to run first. In this case main(). You’ll need this code in place to make

the unit testing work correctly.

Unit testing – rollDie()
Create a new Python file in the same project, and name it task1_unittest.py.

Go through the steps following steps

1. Import the Python unittest library

import unittest

2. Import your code to test

from task1 import *

3. Create a class for your tests by inheriting from unittest.TestCase

class Task1UnitTest (unittest.TestCase):

4. Add a new unit test to your class for your rollDie() method

def test_rollDie(self):

This function should call rollDie() and evaluate the results

Use the assert method to check the results e.g.

self.assertTrue(value > 1)

self.assertTrue(value < maxNumOfSides)

OR

self.assertIn (value, range(1, die))

5. Run the test

Did the test perform correctly?

Look at the output from the unit test and determine what is wrong.

6. Fix the test and re-run the test.

Unit testing – validateNumberOfSides()
Now we are going to write a second unit test, but this time to test function validateNumberOfSides.

1. Add a new unit test to your class for your validateNumberOfSides () method

def test_validateNumberOfSides(self):

2. Run the test

Did the test perform correctly?

Look at the output from the unit test and determine what is wrong.

The error could be in either validateNumberOfSides or test_validateNumberOfSides.

When testing your code, remember to choose boundary conditions for the test cases.

Hint: Partial solution is on the last page.

Simple dice game
Now create a new function called diceGame, which implements the following algorithm.

The game is played by two players. Each player has one red die and one black die. All dice in

the game have the same number of sides.

Each player rolls their two dice. A player’s score is determined by subtracting the value of

their red die from the value of their black die. The player with the highest score wins, unless

either player rolls a double, in which case that player wins. If both players roll a double,

then the lowest valued double wins e.g 2 x ones, beats 2 x six. In the event that both players

have the same score or roll the same value doubles, then the game is a draw.

Hint: Use the rollDie and validateNumberOfSides from the previous example.

Once you have a working game, consider how to write the unit tests.

Does the way you implemented your game affect how you can build your unit tests?

Can you re-code your game to make it easier to test?

Partial Solutions

Unit testing – validateNumberOfSides()

def test_validateNumberOfSides(self):

 inputData = (-20,-1,0,1,2,6,19,20,21,-1.2,5.6)

 validResponse = (0,0,0,0,2,6,19,20,0,0,5)

 for i in range(len(inputData)):

 die = validateNumberOfSides(inputData[i], 20)

 self.assertEqual(die, validResponse[i])

DiceGame

def diceGame(numOfSides):

 red1 = rollDie(numOfSides)

 black1 = rollDie(numOfSides)

 red2 = rollDie(numOfSides)

 black2 = rollDie(numOfSides)

 score1 = black1 - red1

 score2 = black2 - red2

 if (score1 == 0) and (score2 == 0):

 # two doubles

 if red1 < red2:

 print('Player 1 wins')

 elif red2 < red1:

 print('Player 2 wins')

 else:

 print('Draw')

 elif score1 > score2:

 print('Player 1 wins')

 elif score2 > score1:

 print('Player 2 wins')

 else:

 print('Draw')

