
Making Decisions

Wrestling with Python

Overview

• The Story so far….

• A Python program

• A word about comments

• Making Decisions

• Controlling the execution of statements

• Making a useful program

28-Jan-14Making Decisions 2

THE STORY SO FAR

28-Jan-14Making Decisions 3

Python in a nutshell

• Python lets us tell computers what to do

• We can give it single commands
(immediate mode) or we can put together
a sequence of commands that makes a
program

• The computer uses a “Python interpreter”
which works out the meaning of each
statement and then performs it

28-Jan-14Making Decisions 4

Python programs

• A Python program is a sequence of
statements which are obeyed in the order
they are written

• Each statement can use a Python method
(for example print) or it can work with
data

• Data is stored boxes called “variables”

• Each variable has a name and a type

28-Jan-14Making Decisions 5

Creating Python

• We are using Python version 3.2.2 which
provides a place we can write the
programs and run them

• This is called IDLE

• We can store Python programs in text files
that have the extension “.py” on the end of
the filename

28-Jan-14Making Decisions 6

A PYTHON PROGRAM

28-Jan-14Making Decisions 7

Sums

• This program reads in two numbers, adds
them together and then prints out the result

Sums

• Ask for the first number and read it in as a
string

Sums

• Convert the string into an integer which
we can do sums with

Sums

• Ask for the second number and convert
that into a second integer

Sums

• Do the sum

Sums

• Display the result

A WORD ABOUT
COMMENTS

28-Jan-14Making Decisions 14

Writing Software

• It is important when you write software
that you ensure that you do it well

• A “good” program is not just one that
works – although this does of course help

• For a program to be properly useful it is
also important to ensure that it is well
written

28-Jan-14Making Decisions 15

Well Written Code

• Easy to read

– All the names in the text should add meaning

• Clean and consistent layout

– The same format for common constructions

• Well managed

– It should be clear who wrote the code and the
reasons for any changes

28-Jan-14Making Decisions 16

Comments

• One way to add a lot of value to a program
is to add comments

– We already do this with sensible variable
names, but comments allow even more detail

• A comment is something that the compiler
completely ignores

– It is only for use by the programmer

28-Jan-14Making Decisions 17

Creating a Comment

• The character # means the start of a

comment

28-Jan-14Making Decisions 18

Line Comments

• The character sequence # starts a
comment that extends to the end of the
line

• You can use these to quickly explain what
a statement is doing

28-Jan-14Making Decisions 19

x=0 # start at the left hand edge

Stupid Comments

• Comments should add value

• They should not just replicate information
that a programmer should know already

28-Jan-14Making Decisions 20

count = count + 1 # add 1 to count

Comments are cool

• Make sure that you use comments

• At least put your name and the date at the
top

• That way you can convince yourself that
you actually wrote the code when you look
at it six months later….

28-Jan-14Making Decisions 21

MAKING DECISIONS

28-Jan-14Making Decisions 22

Program Flow

• At the moment every program we have
written has just run through its statements
in sequence

• This form of linear program flow is not
always what you want

• The power of computer programs is that
they can make decisions

28-Jan-14Chapter 6.1 : Conditions 23

The Three Types of Flow

1. Straight line:

Perform one statement after another

2. Decision:

Choose a statement based on a given condition

3. Loop

Repeat statements based on a given condition

28-Jan-14Chapter 6.1 : Conditions 24

Double Glazing Program

• We are going to consider a program we are
writing for a customer

– Read in height and width of window

– Print out area and length of glass to buy

• This might even be useful

• Before we can write the program we need
to go find some metadata

28-Jan-14Chapter 6.1 : Conditions 25

What is Metadata?

• Metadata is data about data

– Limits (maximum and minimum values)

– Units (measured in metres, gallons, years)

• It gives a proper context for what the
program is doing

• You have to gather the Metadata before
you write the program

28-Jan-14Chapter 6.1 : Conditions 26

Where does Metadata come from?

• It must come from the customer

– They are the only people who can tell you
about their business

• Only the double glazing salesman knows
that he measure his windows in meters

• If you assume that he uses feet and inches
you will supply a useless program

28-Jan-14Chapter 6.1 : Conditions 27

Getting Metadata

• You need to go out and ask the customer
for this information

• They will not necessarily think to tell you

• Two assumptions that lead to disaster
– Customer assumes you know the units

– You assume the customer measures his
windows in feet

• Result = FAIL

28-Jan-14Chapter 6.1 : Conditions 28

Double Glazing Metadata

• This is the metadata that drives our value
inputs for the double glazing program

• I have written it as a comment
– This is not accidental

28-Jan-14Chapter 6.1 : Conditions 29

Window sizes measured in meters
Invalid values:
width less than 0.5 metres
width greater than 5.0 metres
height less than 0.75 metres
height greater than 3.0 metres

Conditional Execution - if

• The if statement lets a program react in a
particular way to data it receives

• This allows us to use metadata in our
programs to make them more effective

– The double glazing program could reject
widths and heights that are incorrect

– This will protect us from lawsuits..

28-Jan-14Chapter 6.1 : Conditions 30

Conditional Statement

• This is the general form of the Python
conditional statement

• The condition is an expression that returns
a boolean result – True or False

28-Jan-14Chapter 6.1 : Conditions 31

if (condition):
statement we do if condition is true

else:
statement we do if condition is false

Relational Operators

• We have seen how a operators can be used in
arithmetic expressions to produce numeric
results

• We can use relational operators in
expressions to produce boolean results which
are true or false

28-Jan-14Chapter 6.1 : Conditions 32

height > 3.0

2 * (width + height) * 3.25

Testing the height upper limit

• This test validates the upper bound of the
height value

• Note that it doesn’t check for heights
which are to small or negative

28-Jan-14Chapter 6.1 : Conditions 33

if (height > 3.0):
print('Too high')

else:
print('OK')

Missing off the else part

• If you don’t need the else part you can
leave it out

• Whether you have an else part depends on
what you are trying to achieve with the
code

– Don’t feel obliged to add one

28-Jan-14Chapter 6.1 : Conditions 34

if (height > 3.0):

print('Too high')

Relational Operators

• You use relational operators to perform
comparisons

• A relational operator works between two
numeric operands

• It returns a boolean result which is either
True or False

28-Jan-14Chapter 6.1 : Conditions 35

== operator

• The == operator returns true if the two

operands are equal

• Note that this is not the same as the =

operator, which performs assignment

28-Jan-14Chapter 6.1 : Conditions 36

if (age == 21):
print ('Happy 21st')

== operator and Floating Point

• Because floating point values can’t be held
exactly it is very dangerous to compare
them for equality

• The condition may be unreliable because
of errors in calculation

28-Jan-14Chapter 6.1 : Conditions 37

if (average == 1.0f):
print ('Average of 1')

== operator and strings

• We can compare strings for equality

• The comparison is case sensitive

– The string "rob" would not be recognised by

the above code

28-Jan-14Chapter 6.1 : Conditions 38

if (name == 'Rob'):
print ('Hello Rob')

The != operator

• The != (not equals) operator returns true if
the operands are not equal to each other

• This can be used in the same way as the
== operator

28-Jan-14Chapter 6.1 : Conditions 39

if (name != 'Rob'):
print ('You are not Rob')

The < and > operators

• The < and > operators test for less-than
and greater-than respectively

• Note that if the operands are equal the
result is not true

28-Jan-14Chapter 6.1 : Conditions 40

if (width < 0.5):
print ('width too low')

The <= and >= operators

• These work like < and >, but also include
the case where the two are equal

• To invert a < you have to use a >=

• The code above inverts the previous test

28-Jan-14Chapter 6.1 : Conditions 41

if (width >= 0.5):
print ('not too low')

The ! operator

• The not operator can be used to invert a
boolean value

• It works on one operand or expression in
brackets

28-Jan-14Chapter 6.1 : Conditions 42

if (not False)
print ('not false is true')

Combining Logical Operators

• Sometimes a program needs to combine a
number of logical expressions
– If the height is too wide or the height is too

high

• Python provides operators that can be
used in this way:
and for logical and

or for logical or

28-Jan-14Chapter 6.1 : Conditions 43

Testing both height limits

• The Logical Operator or can be used to
combine two conditions

• If one or other of the conditions is true the
operator will return true

28-Jan-14Chapter 6.1 : Conditions 44

if (height > 3 or height < 0.5):

print('height invalid')

else:

print('height OK')

Inverting the Condition

• This test inverts the condition to return
true if the height is valid

• Note we have to invert the conditions and
change the logical operator

28-Jan-14Chapter 6.1 : Conditions 45

if (height <= 3 and height >= 0.5):

print('height valid')

Creating Blocks

• All the statements that are indented
‘underneath’ the if statement are
controlled by that statement

• This is how Python does “blocks”

28-Jan-14Chapter 6.1 : Conditions 46

if (height > 5):

print('height restricted')

height = 5

Creating Blocks

• The print message is always obeyed
because it is not indented like the other
two

28-Jan-14Chapter 6.1 : Conditions 47

if (height > 5):

print('height restricted')

height = 5

print('This message is always printed')

Indenting Pain

• Python is one of the few languages that
uses this indenting technique to show how
code is controlled by conditions

• Other languages use brackets to mark the
start and the end

• But in Python you must get your
indenting right or code will fail

28-Jan-14Making Decisions 48

What we are going to do…

• Get the IDLE development environment
going

• Solve a problem by creating a program
that reads in data and makes decisions
based on the values supplied

28-Jan-14Making Decisions 49

