ey Hull

=

o

>

=

7
4
=
=

-

Making Decisions

Wrestling with Python

TR\
UNIVERSITY OF Hllll

Overview

» The Story so far....

* A Python program

* A word about comments

« Making Decisions

» Controlling the execution of statements
» Making a useful program

Making Decisions 28-Jan-143

TR\
UNIVERSITY OF Hllll

Python in a nutshell

* Python lets us tell computers what to do

» We can give it single commands
(immediate mode) or we can put together
a sequence of commands that makes a

program

* The computer uses a “Python interpreter”
which works out the meaning of each
statement and then performs it

TR\
UNIVERSITY OF Hllll

Python programs

« A Python program is a sequence of
statements which are obeyed in the order
they are written

« Each statement can use a Python method
(for example print) or it can work with
data

 Data is stored boxes called “variables”
« Each variable has a name and a type

TR\
UNIVERSITY OF Hllll

Creating Python

« We are using Python version 3.2.2 which
provides a place we can write the
programs and run them

e This is called IDLE

» We can store Python programs in text files
that have the extension “.py” on the end of
the filename

Making Decisions 28-Jan-14y

TN
universrry or Hull

Sl I I I lS File Edit Format Run Options Windows Help

Thi= program works out the result by adding two numbers
Rob Miles November 2012

Read the numbers

firscString = input('Enter first number: ')
firsctNumber = int(firstString)

secondString = input ('Enter second number: ')
secondNumber = int (secondString)

work out the =um

result = firstNumber + secondNumber

Display the result

print ("The result is ', result)

Ln: 18|Col: O

 This program reads in two numbers, adds
them together and then prints out the result

G DL
UNI‘E}E%SIT‘YkOF Hull

Sl I I I lS File Edit Format Run Options Windows Help

Thi= program works out the result by adding two numbers
Rob Miles November 2012

Read the numbers

firscString = input ('Enter first number: ')
firsctNumber = int(firstString)
secondString = input ('Enter second number: ')

secondNumber = int (secondString)

work out the s=um

result = firstNumber + secondNumber
Display the result

print ("The result is ', result)

e Ask for the first number and read it in as a
string

G DL
UNI{?E%S ITngOF Hull

Sl I I I lS File Edit Format Run Options Windows Help

Thi= program works out the result by adding two
Rob Miles November 2012

Read the numbers

firscString = input('Enter first number: ')
firstNumber = int(firstString)

secondString = input ('Enter second number: ')
secondNumber = int (secondString)

work out the =um

result = firstNumber + secondNumber

Display the result

print ("The result is ', result)

Ln: 18|Col: O

* Convert the string into an integer which
we can do sums with

G S e
UNI{?E%S ITngOF Hull

Sl I I I lS File Edit Format Run Options Windows Help

Thi= program works out the result by adding two
Rob Miles November 2012

Read the numbers

firscString = input('Enter first number: ')
firsctNumber = int(firstString)

secondString = input ('Enter second number: ')
secondNumber = int (secondString)

work out the =um

result = firstNumber + secondNumber

Display the result

print ("The result is ', result)

Ln: 18|Col: O

» Ask for the second number and convert
that into a second integer

G DL
UNI‘E}E%SIT:?OF Hull

Sl I I I lS File Edit Format Run Options Windows Help

Thi= program works out the result by adding two numbers
Rob Miles November 2012

Read the numbers

firscString = input('Enter first number: ')
firsctNumber = int(firstString)
secondString = input ('Enter =econd number: ')

secondNumber = int (secondString)

work out the sum

result = firstNumber + secondNumber
Display the result

print ('The result is ', result)

Do the sum

G DL
UNI‘E}E%SIT:?OF Hull

Sl I I I lS File Edit Format Run Options Windows Help

Thi= program works out the result by adding two numbers
Rob Miles November 2012

Read the numbers

firscString = input('Enter first number: ')
firsctNumber = int(firstString)
secondString = input ('Enter =econd number: ')

secondNumber = int (secondString)

work out the sum

result = firstNumber + secondNumber
Display the result

print ("The result is ', result)

 Display the result

Making Decisions 28-Jan-114

TR\
UNIVERSITY OF Hllll

Writing Software

e It is important when you write software
that you ensure that you do it well

» A “good” program is not just one that
works — although this does of course help

» For a program to be properly useful it is
also important to ensure that it is well
written

TR\
UNIVERSITY OF Hllll

Well Written Code

« Easy to read

— All the names in the text should add meaning
* Clean and consistent layout

— The same format for common constructions
* Well managed

— It should be clear who wrote the code and the
reasons for any changes

TR\
UNIVERSITY OF Hllll

Comments

* One way to add a lot of value to a program
1s to add comments

— We already do this with sensible variable
names, but comments allow even more detail

* A comment is something that the compiler
completely ignores

— It is only for use by the programmer

G DL
UNI{J'E%SITQYkOF Hull

Creating a Comment

File Edit Format Run Options Windows Help

Thi= program works out the result by adding two numbers
Rob Miles November 2012'

 The character # means the start of a
comment

Making Decisions 28-Jan-14 18

TR\
UNIVERSITY OF Hllll

Line Comments

x=0 # start at the left hand edge

» The character sequence # starts a
comment that extends to the end of the
line

* You can use these to quickly explain what
a statement is doing

TR\
UNIVERSITY OF Hl.lll

Stupid Comments

count = count + 1 # add 1 to count

« Comments should add value

» They should not just replicate information
that a programmer should know already

Making Decisions 28-Jan-14

TR\
UNIVERSITY OF Hllll

Comments are cool

» Make sure that you use comments
At least put your name and the date at the
top

« That way you can convince yourself that
you actually wrote the code when you look
at 1t six months later....

Making Decisions

TR\
UNIVERSITY OF Hllll

Program Flow

» At the moment every program we have
written has just run through its statements
In sequence

 This form of linear program flow is not
always what you want

* The power of computer programs is that
they can make decisions

TR\
UNIVERSITY OF Hl.lll

The Three Types of Flow

1. Straight line:

Perform one statement after another
2. Decision:

Choose a statement based on a given condition
3. Loop

Repeat statements based on a given condition

Chapter 6.1 : Conditions 28-Jan-14 24

TR\
UNIVERSITY OF Hllll

Double Glazing Program

» We are going to consider a program we are
writing for a customer

— Read in height and width of window
— Print out area and length of glass to buy

 This might even be useful

» Before we can write the program we need
to go find some metadata

TR\
UNIVERSITY OF Hllll

What is Metadata?

 Metadata is data about data
— Limits (maximum and minimum values)
— Units (measured in metres, gallons, years)

» It gives a proper context for what the
program is doing

* You have to gather the Metadata before
you write the program

TR\
UNIVERSITY OF Hllll

Where does Metadata come from?

e It must come from the customer

— They are the only people who can tell you
about their business

* Only the double glazing salesman knows
that he measure his windows in meters

» If you assume that he uses feet and inches
you will supply a useless program

TR\
UNIVERSITY OF Hllll

Getting Metadata

* You need to go out and ask the customer
for this information

» They will not necessarily think to tell you

« Two assumptions that lead to disaster
— Customer assumes you know the units

— You assume the customer measures his
windows 1n feet

 Result = FAIL

TN
universrry or Hull

Double Glazing Metadata

Window sizes measured in meters
Invalid values:

width less than 0.5 metres
width greater than 5.0 metres
height less than 0.75 metres
height greater than 3.0 metres

H H HF =

 This is the metadata that drives our value
inputs for the double glazing program

e | have written it as a comment
— This 1s not accidental

Chapter 6.1 : Conditions 28-Jan-14 29

TR\
UNIVERSITY OF Hllll

Conditional Execution - if

» The if statement lets a program react in a
particular way to data it receives

» This allows us to use metadata in our
programs to make them more effective

— The double glazing program could reject
widths and heights that are incorrect

— This will protect us from lawsuits..

TR\
UNIVERSITY OF Hl.lll

Conditional Statement

(condition):
statement we do if condition is true

statement we do if condition is false

» This is the general form of the Python
conditional statement

* The condition is an expression that returns
a boolean result — True or False

TR\
UNIVERSITY OF Hllll

Relational Operators

2 * (width + height) * 3.25

* We have seen how a operators can be used in
arithmetic expressions to produce numeric
results

height > 3.0

» We can use relational operators in
expressions to produce boolean results which
are true or false

TR\
UNIVERSITY OF Hl.'lll

Testing the height upper limit

(height > 3.0):
print()

ﬁrint()

» This test validates the upper bound of the
height value

» Note that it doesn’t check for heights
which are to small or negative

Chapter 6.1 : Conditions 28-Jan-14 33

TR\
UNIVERSITY OF Hl.lll

Missing off the else part

(height > 3.0):
print/()

 If you don’t need the else part you can
leave it out

» Whether you have an else part depends on
what you are trying to achieve with the

code
— Don’t feel obliged to add one

TR\
UNIVERSITY OF Hllll

Relational Operators

* You use relational operators to perform
comparisons

A relational operator works between two
numeric operands

e It returns a boolean result which is either
True or False

TR\
UNIVERSITY OF Hllll

== operator

(age == 21):
print ()

» The == operator returns true if the two

operands are equal

Note that this is not the same as the =
operator, which performs assignment

TR\
UNIVERSITY OF Hl.lll

== operator and Floating Point

if (average == 1.0f):
print ()

« Because floating point values can’t be held
exactly it is very dangerous to compare
them for equality

» The condition may be unreliable because
of errors in calculation

Chapter 6.1 : Conditions 28-Jan-14 37

TR\
UNIVERSITY OF Hl.'lll

== operator and strings

it (name ==):
print ()

» We can compare strings for equality

» The comparison is case sensitive

— The string "rob" would not be recognised by
the above code

Chapter 6.1 : Conditions 28-Jan-14 38

TR\
UNIVERSITY OF Hllll

The != operator

it (name !=):
print ()

» The != (not equals) operator returns true if
the operands are not equal to each other

 This can be used in the same way as the
== gperator

TR\
UNIVERSITY OF Hl.lll

The < and > operators

if (width < 0.5):
print ()

* The < and > operators test for less-than
and greater-than respectively

* Note that if the operands are equal the
result is not true

TR\
UNIVERSITY OF Hllll

The <= and >= operators

if (width >= 0.5):
print ()

 These work like < and >, but also include
the case where the two are equal

» To invert a < you have to use a >=
* The code above inverts the previous test

TR\
UNIVERSITY OF Hl.lll

The ! operator

()

print ('not false is true')

» The not operator can be used to invert a
boolean value

« It works on one operand or expression in
brackets

Chapter 6.1 : Conditions 28-Jan-14 42

TR\
UNIVERSITY OF Hl.lll

Combining Logical Operators

» Sometimes a program needs to combine a
number of logical expressions

— If the height is too wide or the height is too
high
» Python provides operators that can be
used in this way:
and for logical and

or forlogical or

Chapter 6.1 : Conditions 28-Jan-14 43

TR\
UNIVERSITY OF Hl.lll

Testing both height limits

if (height > 3 or height < 0.5):
print('height invalid')
else:
print('height OK")

» The Logical Operator or can be used to
combine two conditions

* If one or other of the conditions is true the
operator will return true

Chapter 6.1 : Conditions 28-Jan-14 44

TR\
UNIVERSITY OF Hllll

Inverting the Condition

if (height <= 3 and height >= 0.5):
print('height valid')

* This test inverts the condition to return
true if the height is valid

e Note we have to invert the conditions and
change the logical operator

TR\
UNIVERSITY OF Hllll

Creating Blocks

if (height > 5):
print('height restricted')
height = 5

e All the statements that are indented
‘underneath’ the if statement are
controlled by that statement

 This is how Python does “blocks”

TR\
UNIVERSITY OF Hllll

Creating Blocks

if (height > 5):
print('height restricted')
height = 5
print('This message is always printed')

» The print message is always obeyed
because it is not indented like the other
two

TR\
UNIVERSITY OF Hllll

Indenting Pain

» Python is one of the few languages that
uses this indenting technique to show how
code 1s controlled by conditions

 Other languages use brackets to mark the
start and the end

* But in Python you must get your
indenting right or code will fail

TR\
UNIVERSITY OF Hllll

What we are going to do...

* Get the IDLE development environment
going

 Solve a problem by creating a program
that reads in data and makes decisions

based on the values supplied

