
Wrestling with Python © Rob Miles 2014 1

University of Hull
Department of Computer Science

Writing Games with Pygame

Vsn. 1.0 Rob Miles 2014

Week 3: Games and Classes
These notes describe the practical elements of the course. They are to be used in conjunction with the

slide decks.

Practical Break 1: A Player Object in CrackerChase
In this break we are going to see how a game controls a Player object. This will be functionally very

similar to the program that we created last time, but it will be structured in a way that will make it

much easier to create large and complex games.

Getting started

We are going to use the programs that we wrote last week as the basis of the work this week. You

will also need to find the cheese.png file and add that to the folder where you store your programs.

If you didn’t get as far as drawing the cheese, you can find the cheese image here:

http://www.robmiles.com/s/cheese.png

Later on you will need a cracker. You can find it here:

http://www.robmiles.com/s/cracker.png

These images are not subject to any form of copyright. Also, I’ve eaten them both and they were

delicious. My next game will probably involve pies.

Before you go any further; perform the following:

1. Log into your system with the username and password that you know and love

from the past.

2. Start the Idle environment.

CrackerChase Game

To show how the game might work we are going to create a game called “CrackerChase”. The cheese

will move over the screen chasing crackers that appear at random positions. The aim of the game is to

get as many crackers as you can in ten seconds.

The Player Class

The starting point will be a cheese that the player can control with the keyboard. We are going to

make this a separate class. There are lots of advantages to doing this, we will discover some of them

later in the labs. The Player is quite a large object, but don’t let this worry you. Please don’t try and

type all this in though, the best way to get hold of this is to download the file from here:

http://www.robmiles.com/s/Player.txt

Before you go any further; perform the following:

3. Using Idle create a new Python game file called CrackerChase.

4. Using Internet Explorer, browse to the file above and open it in Notepad. Select all

the text in Player.txt and paste it into your Python game.

Wrestling with Python © Rob Miles 2014 2

import pygame

import random

class Player:

 def __init__(self, position, limit, image):

 # set the initial position and record this as the reset position

 self.resetPosition = position

 self.rect = pygame.Rect(0,0,image.get_width(), image.get_height())

 self.setPosition(position)

 self.limit = [float(limit[0]), float(limit[1])]

 self.image = image

 self.movementSpeed = [200,200] # pixels per second

 self.reset()

 def draw(self, surface):

 surface.blit(self.image, self.position)

 def update(self, deltaTime):

 # Handle movement - if we are moving in that direction

 # change the current position by the speed value

 if self.movingUp:

 self.position[1] = self.position[1] - (self.movementSpeed[1]*deltaTime)

 if self.movingDown:

 self.position[1] = self.position[1] + (self.movementSpeed[1]*deltaTime)

 if self.movingLeft:

 self.position[0] = self.position[0] - (self.movementSpeed[0]*deltaTime)

 if self.movingRight:

 self.position[0] = self.position[0] + (self.movementSpeed[0]*deltaTime)

 # Clamp the position values so we can't move off the screen

 if self.position[0] < 0:

 self.position[0]=0

 if self.position[1] < 0:

 self.position[1]=0

 if self.position[0] + self.image.get_width() > self.limit[0]:

 self.position[0] = self.limit[0] - self.image.get_width()

 if self.position[1] + self.image.get_height() > self.limit[1]:

 self.position[1] = self.limit[1] - self.image.get_height()

 # Move to the new position

 self.setPosition(self.position)

Wrestling with Python © Rob Miles 2014 3

 # Movement controllers - two for each direction

 def StartMoveUp(self):

 self.movingUp = True

 def StopMoveUp(self):

 self.movingUp = False

 def StartMoveDown(self):

 self.movingDown = True

 def StopMoveDown(self):

 self.movingDown = False

 def StartMoveLeft(self):

 self.movingLeft = True

 def StopMoveLeft(self):

 self.movingLeft = False

 def StartMoveRight(self):

 self.movingRight = True

 def StopMoveRight(self):

 self.movingRight = False

 def setPosition(self,position):

 self.position = [float(position[0]), float(position[1])]

 self.rect[0]= self.position[0]

 self.rect[1]= self.position[1]

 def reset(self):

 self.setPosition(self.resetPosition)

 self.movingUp = False

 self.movingDown = False

 self.movingLeft = False

 self.movingRight = False

When you get time, you should take a good hard look at this code. There is some quite important

stuff going on here, which is well worth knowing about. The Player value will be part of our game.

Things to remember:

 The __init__ method in a class runs when a new instance of the class is created. For the

game class this is where we set up all the Pygame stuff. For the Player this is where all the

settings for the player (position on screen, limits of the screen and image) are copied into the

class instance.

 The self part means “use something which is part of this class”. If it is a variable it means

use (or create) a variable which is held in the class. If it is a method it means use the method

with that name.

 We are using lists to hold coordinate value pairs. The position variable in the Player is a

list that contains two values, x and y. We can get hold of the x coordinate by using

position[0] and the y coordinate by using position[1].

Wrestling with Python © Rob Miles 2014 4

 The Player also contains a Pygame rectangle data member that is used to determine the

region of the screen occupied by the player. This variable, called rect, is created when the

Player is created and updated by the setPosition method. Games programs can use this

variable to detect when the player has collided with another game object.

 The Player class contains an update method which is called at regular intervals by the

game to update the state of a player. The update method is given a parameter, called

deltaTime, that tells the player the number of seconds since the last time update was

called. This allows a player object to adjust its position based on the speed it is presently

moving.

 The Player class contains a reset method that is called at the start of a game. This puts the

player back at the reset position and turns off all movement.

The CrackerChaseGame class

The game now has an object that can be used to represent a player on the screen. The next thing to do

is create a class to hold the game itself. This will hold Player values and other objects that will

represent the game in progress.

class CrackerChaseGame:

 def __init__(self):

 self.isRunning = False

 self.windowSize = (800, 600)

 self.backgroundColour = (255, 255, 255)

 self.textColour = (255,0,0)

 self.fps = 60

 pygame.init()

 self.surface = pygame.display.set_mode(self.windowSize)

 pygame.display.set_caption("Cracker Chase")

 cheeseImage = pygame.image.load("cheese.png")

 self.gameCheese = Player((0,0),self.windowSize,cheeseImage)

 def run(self):

 self.gameCheese.draw(self.surface)

 pygame.display.flip()

This is the starting code for our game. It creates a Player value (called gameCheese) and then

draws it. Things to remember:

 This time the __init__ method runs when a new CrackerCheeseGame instance is created.

This is where the game is set up. The Pygame framework is initialised.

 The __init__ method also creates an instance of the Player class, in a variable called

gameCheese. The Python system knows that this is part of the CrackerCheeseGame class

because it is referred to as self.gameCheese

Before you go any further; perform the following:

5. Add the above class into your program underneath the Player class.

6. If you run the program nothing will happen. This is because at the moment we have

just described a couple of classes, there is no code that actually runs.

Wrestling with Python © Rob Miles 2014 5

Running the Game

Now that we have our two classes we can use them to get the game working.

g = CrackerChaseGame()

g.run()

The above two statements create an instance of the game and then call the run method in that game

instance. The instance is referred to by a variable called g. Things to remember:

 The __init__ method inside CrackerChaseGame runs when the first statement is executed

because constructors are always called when a new instance of a class is created. This method

is where the game is set up and Pygame begins to run. If we ran the first statement on its own

we would see an empty Pygame window appear on the screen.

 Neither of the two statements creates a Player instance. The player is created when the game

is constructed.

Before you go any further; perform the following:

7. Add the above two statements into your program at the bottom.

8. Run the program and it should draw some cheese in the top right hand corner of the

screen.

We now have two separate objects, one is the game and the other is the single game object. The

object has a draw behaviour which we are now using to ask it to draw itself on the screen.

Practical Break 2: Controlling the Player Object
In this break we are going to see how a game controls a Player object and runs the Draw-Update

behaviours.

class CrackerChaseGame:

 def __init__(self):

 self.isRunning = False

 self.windowSize = (800, 600)

 self.backgroundColour = (255, 255, 255)

 self.textColour = (255,0,0)

 self.fps = 60

 pygame.init()

 self.surface = pygame.display.set_mode(self.windowSize)

 pygame.display.set_caption("Cracker Chase")

 cheeseImage = pygame.image.load("cheese.png")

 self.gameCheese = Player((0,0),self.windowSize,cheeseImage)

 def drawGame(self):

 self.surface.fill(self.backgroundColour)

 self.gameCheese.draw(self.surface)

 pygame.display.flip()

 def updateGame(self,deltaTime):

 for e in pygame.event.get():

 if e.type == pygame.KEYDOWN:

 if e.key == pygame.K_ESCAPE:

Wrestling with Python © Rob Miles 2014 6

 self.isRunning = False

 return

 if e.key == pygame.K_w:

 self.gameCheese.StartMoveUp()

 if e.key == pygame.K_x:

 self.gameCheese.StartMoveDown()

 if e.key == pygame.K_a:

 self.gameCheese.StartMoveLeft()

 if e.key == pygame.K_d:

 self.gameCheese.StartMoveRight()

 if e.type == pygame.KEYUP:

 if e.key == pygame.K_w:

 self.gameCheese.StopMoveUp()

 if e.key == pygame.K_x:

 self.gameCheese.StopMoveDown()

 if e.key == pygame.K_a:

 self.gameCheese.StopMoveLeft()

 if e.key == pygame.K_d:

 self.gameCheese.StopMoveRight()

 self.gameCheese.update(deltaTime)

 def run(self):

 clock = pygame.time.Clock()

 while True:

 # time to complete the last frame (in secs)

 deltaTime = clock.tick(self.fps)/1000.0

 self.updateGame(deltaTime)

 self.drawGame()

Some of this code will be familiar, but it has been arranged a little differently. The run method now

implements a “game loop” which repeatedly calls updateGame and drawGame methods. The

updateGame method updates the cheese and the drawGame method draws it.

Before you go any further; perform the following:

9. Replace the CrackerChaseGame class in your program with the code above. Be

careful not to overwrite the bottom two statements that create the game and start it

running.

10. Run the program and you should be able to steer the cheese around the screen with

the keyboard.

Practical Break 3: Adding a Target
In this break we are going to add a target that randomly places itself on the screen. This is the cracker

that we are going to chase.

Adding the Target Class

A target is like a very stupid player. It just draws itself. The only clever thing it can do is position

itself randomly on the screen.

Wrestling with Python © Rob Miles 2014 7

class Target:

 def __init__(self, limit, image):

 self.limit = [float(limit[0]), float(limit[1])]

 self.rect = pygame.Rect(0,0,image.get_width(), image.get_height())

 self.image = image

 self.randomPlace()

 def randomPlace(self):

 x = random.randint(0,self.limit[0]-self.image.get_width())

 y = random.randint(0,self.limit[1]-self.image.get_height())

 self.setPosition((x,y))

 def setPosition(self,position):

 self.position = [float(position[0]), float(position[1])]

 self.rect[0]= self.position[0]

 self.rect[1]= self.position[1]

 def draw(self, surface):

 surface.blit(self.image, self.position)

Before you go any further; perform the following:

11. Add the Target class above to your game. Put it above the CrackerChaseGame

class.

Adding a Cracker to the game

Now we need to add a line to create a cracker for our game to use.

crackerImage = pygame.image.load("cracker.png")

self.gameCracker = Target(self.windowSize,crackerImage)

Before you go any further; perform the following:

12. Add the above lines to the __init__ method in CrackerChaseGame. You want

put them below the two lines in that create the gameCheese object. They look very

similar.

Drawing the Cracker

Now that we have the cracker in the game, we have to draw it.

 self.gameCracker.draw(self.surface)

Before you go any further; perform the following:

13. Add the above statement to the drawGame method in CrackerChaseGame. You

want put them below the statement that draws the GameCheese object.

If you run the game you should see a piece of cheese on the screen, and a cracker. You can move the

cheese towards the cracker. Next time we will find out how to detect collisions between them.

Rob Miles June. 2014

