
©Rob Miles

Writing Games with Pygame

Wrestling with Python 



©Rob Miles

Games and Classes

• A Complete Game

• Games and Objects

25-Jun-14Creating Gameplay 2



©Rob Miles

CrackerChase

25-Jun-14Creating Gameplay 3



©Rob Miles

CrackerChase Game

• This is a very 
simple game

• Players must steer 
the cheese around 
the screen and 
“eat” the crackers

25-Jun-14Creating Gameplay 4



©Rob Miles

CrackerChase Game

• The game has a 
start screen and a 
game screen

• When the game 
ends the player is 
returned to the 
start screen

25-Jun-14Creating Gameplay 5



©Rob Miles

Building CrackerChase

• To create a game that can be extended and 
customised we need to change the 
arrangement of the elements

• For this game we will need the cheese for 
the player to control and some targets

• Now we need to look at how we can create 
a Player object that the user can steer

25-Jun-14Creating Gameplay 6



©Rob Miles

Games and Objects

25-Jun-14Creating Gameplay 7



©Rob Miles

Objects and Players

• An object brings together data and 
behaviours to manage a part of a system

– The Player will have a position on the screen 

– It will also have behaviours such as draw, 
update and reset

• We are going to see how to create a player 
object

25-Jun-14Creating Gameplay 8



©Rob Miles

Creating a Player

• The gameCheese variable is a member of 
the game class

• gameCheese is constructed at the start of 
the game

• It is given several setting values when it is 
constructed

25-Jun-14Creating Gameplay 9

self.gameCheese = 
Player((0,0),self.windowSize,cheeseImage)



©Rob Miles

self.gameCheese = 
Player((0,0),self.windowSize,cheeseImage)

Creating a Player

• This is the initial position of the player on 
the screen

• We are placing them on the top, left hand 
corner

• The player will be moved to this position 
at the start of each game

25-Jun-14Creating Gameplay 10



©Rob Miles

self.gameCheese = 
Player((0,0),self.windowSize,cheeseImage)

Creating a Player

• This is the size of the area where the 
cheese will be drawn

• The cheese will not allow itself to be placed 
outside this area

• This is a tuple that is set when the game 
starts and contains an x and a y value

25-Jun-14Creating Gameplay 11



©Rob Miles

self.gameCheese = 
Player((0,0),self.windowSize,cheeseImage)

Creating a Player

• This is the image used to draw a picture of 
cheese on the screen

• If we make different player objects 
(perhaps for a multi-player game) we can 
use different images

25-Jun-14Creating Gameplay 12



©Rob Miles

Creating a Player

• The constructor method inside the player 
takes the settings that are passed into it 
and uses these to configure this player 
instance

25-Jun-14Creating Gameplay 13

def __init__(self, position, limit, image):

self.resetPosition = position

self.image = image

... 



©Rob Miles

PRACTICAL BREAK 1

A Player Object in CrackerChase

25-Jun-14Creating Gameplay 14



©Rob Miles

Object Communication

• At the moment we just now how to add the 
object to our game and use it

• Now we are going to find out how to send 
commands to the object as the game is 
played

• We are going to steer the cheese

25-Jun-14Creating Gameplay 15



©Rob Miles

Steering the Cheese

• At the end of the last session we had 
discovered how to steer cheese around the 
screen

25-Jun-14Creating Gameplay 16

for e in pygame.event.get():
if e.type == pygame.KEYDOWN:

if e.key == pygame.K_w:
cheeseMovingUp = True

if e.type == pygame.KEYUP:
if e.key == pygame.K_w:

cheeseMovingUp = False
if cheeseMovingUp:

cheeseY = cheeseY-cheeseYSpeed



©Rob Miles

Steering the Cheese

• This loop works through all the pygame
events

25-Jun-14Creating Gameplay 17

for e in pygame.event.get():
if e.type == pygame.KEYDOWN:

if e.key == pygame.K_w:
cheeseMovingUp = True

if e.type == pygame.KEYUP:
if e.key == pygame.K_w:

cheeseMovingUp = False
if cheeseMovingUp:

cheeseY = cheeseY-cheeseYSpeed



©Rob Miles

Steering the Cheese

• If the event is a KEYDOWN it will move 
the cheese UP if the key pressed is a w

25-Jun-14Creating Gameplay 18

for e in pygame.event.get():
if e.type == pygame.KEYDOWN:

if e.key == pygame.K_w:
cheeseMovingUp = True

if e.type == pygame.KEYUP:
if e.key == pygame.K_w:

cheeseMovingUp = False
if cheeseMovingUp:

cheeseY = cheeseY-cheeseYSpeed



©Rob Miles

Steering the Cheese

• This flag holds the vertical movement state 
of the cheese

25-Jun-14Creating Gameplay 19

for e in pygame.event.get():
if e.type == pygame.KEYDOWN:

if e.key == pygame.K_w:
cheeseMovingUp = True

if e.type == pygame.KEYUP:
if e.key == pygame.K_w:

cheeseMovingUp = False
if cheeseMovingUp:

cheeseY = cheeseY-cheeseYSpeed



©Rob Miles

Steering the Cheese

• The flag is set when the key is and cleared 
when the key is released

25-Jun-14Creating Gameplay 20

for e in pygame.event.get():
if e.type == pygame.KEYDOWN:

if e.key == pygame.K_w:
cheeseMovingUp = True

if e.type == pygame.KEYUP:
if e.key == pygame.K_w:

cheeseMovingUp = False
if cheeseMovingUp:

cheeseY = cheeseY-cheeseYSpeed



©Rob Miles

Steering the Cheese

• When the cheese is moving up the Y 
position is updated by the speed value

25-Jun-14Creating Gameplay 21

for e in pygame.event.get():
if e.type == pygame.KEYDOWN:

if e.key == pygame.K_w:
cheeseMovingUp = True

if e.type == pygame.KEYUP:
if e.key == pygame.K_w:

cheeseMovingUp = False
if cheeseMovingUp:

cheeseY = cheeseY-cheeseYSpeed



©Rob Miles

Steering a Player in a game

• When we want to steer a Player object 
around the screen we need to call methods 
in that object to start and stop its move 
behaviour

• The structure of the keyboard 
management is the same, but what we do 
when we detect key events must change

25-Jun-14Creating Gameplay 22



©Rob Miles

Steering a Player object

• This code steers the player in a game

• It runs inside the game, and controls a 
player object

25-Jun-14Creating Gameplay 23

for e in pygame.event.get():
if e.type == pygame.KEYDOWN:

if e.key == pygame.K_w:
self.gameCheese.StartMoveUp()

if e.type == pygame.KEYUP:
if e.key == pygame.K_w:

self.gameCheese.StopMoveUp()



©Rob Miles

Steering a Player object

• In our game the instance of the Player
object is called gameCheese

• The object is created when the game starts 
running (more on this later)

25-Jun-14Creating Gameplay 24

for e in pygame.event.get():
if e.type == pygame.KEYDOWN:

if e.key == pygame.K_UP:
self.gameCheese.StartMoveUp()

if e.type == pygame.KEYUP:
if e.key == pygame.K_UP:

self.gameCheese.StopMoveUp()



©Rob Miles

Steering a Player object

• The method StartMoveUp is called when 

we want the player to start moving up

25-Jun-14Creating Gameplay 25

for e in pygame.event.get():
if e.type == pygame.KEYDOWN:

if e.key == pygame.K_UP:
self.gameCheese.StartMoveUp()

if e.type == pygame.KEYUP:
if e.key == pygame.K_UP:

self.gameCheese.StopMoveUp()



©Rob Miles

Steering a Player object

• The method StartMoveUp is called when 

we want the player to start moving up

• The method StopMoveUp is called when 

we want the player to stop moving up

25-Jun-14Creating Gameplay 26

for e in pygame.event.get():
if e.type == pygame.KEYDOWN:

if e.key == pygame.K_UP:
self.gameCheese.StartMoveUp()

if e.type == pygame.KEYUP:
if e.key == pygame.K_UP:

self.gameCheese.StopMoveUp()



©Rob Miles

Methods in the Player object

• These are the methods in the Player class

• They set flags in the Player to tell it what 

its movement state is

25-Jun-14Creating Gameplay 27

def StartMoveUp(self):

self.movingUp = True

def StopMoveUp(self):

self.movingUp = False



©Rob Miles

Updating Player position

• When the Player is asked to update where 

it is on the screen it will use the flags that 
have been set to tell it which way to move

25-Jun-14Creating Gameplay 28

if self.movingUp:

self.position[1] = self.position[1] –

(self.movementSpeed[1]*deltaTime)



©Rob Miles

THIS IS CONFUSING

25-Jun-14Creating Gameplay 29



©Rob Miles

THIS IS CONFUSING

..but we do it for a 
reason

25-Jun-14Creating Gameplay 30



©Rob Miles

Games and Objects

• When we have a game with hundreds of 
different kinds of things on the screen we 
need a way of making sure that we can 
work with them with out getting confused

• We could put them all in one big lump of 
code but it would be a nightmare to work 
with and very hard to reuse the code for 
other games

25-Jun-14Creating Gameplay 31



©Rob Miles

Games and Orchestras

• Thinking of the game as an orchestra, with 
a whole bunch of musicians (objects) being 
controlled by a conductor (which is also an 
object)

• I was also thinking of using a Football 
Team as an analogy, but that might not 
work so well….

25-Jun-14Creating Gameplay 32



©Rob Miles

Player and Game Responsibilities

• The Game object is in charge of getting the 

input from the user and deciding what the 
input actually means

• The Player object is in charge of moving 

around the screen

• The Game will tell the Player when to start 

moving, and when to stop

25-Jun-14Creating Gameplay 33



©Rob Miles

How the Player moves up

1. User presses the Up key

2. Pygame generates a KEYDOWN event for 
the key

3. The game finds this and calls 
StartMoveUp on the Player object

4. Later, when the Player is asked to 
Update itself, it will move up

25-Jun-14Creating Gameplay 34



©Rob Miles

The Player Update method

• While the game is being played it will be 
updating the Player object

• The Player object will update itself with 
the movement that was supplied

25-Jun-14Creating Gameplay 35

def update(self, deltaTime):

if self.movingUp:

self.position[1] = self.position[1]
- (self.movementSpeed[1]*deltaTime)



©Rob Miles

Delta Time

• When the update is called the player is 
told how long it was since the last update

• It can then use this to control the speed of 
the player

25-Jun-14Creating Gameplay 36

def update(self, deltaTime):

if self.movingUp:

self.position[1] = self.position[1]
- (self.movementSpeed[1]*deltaTime)



©Rob Miles

Position Values

• The player holds coordinates in a list 
which contains two values, x and y

• The y coordinate is held in element 1, the x 
coordinate is held in element 0

25-Jun-14Creating Gameplay 37

def update(self, deltaTime):

if self.movingUp:

self.position[1] = self.position[1]
- (self.movementSpeed[1]*deltaTime)



©Rob Miles

PRACTICAL BREAK 2

Controlling the Player Object

25-Jun-14Creating Gameplay 38



©Rob Miles

Next Time

• Next time we will see how we can complete 
the game by adding sound and a start 
screen, along with targets to chase

25-Jun-14Creating Gameplay 39


