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Classes

Wrestling with Python
Using Classes
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What we can do so far...

 Store data (using variables)

* Change data (using expressions)

» Make decisions (using conditions)
 Create loops (using while and for)
» Write methods (using def)

 Store data in lists (using er, lists)
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Processing Cricket Scores

 Earlier we created a program to process
cricket scores

* We read each score value in turn and used
them to work out the highest and lowest
scores, along with the total score and
average
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Storing the player name

» The user of our cricket score processing
program would like it to store the name of
each player as well as their score

e Then it could work out the name of the
player with the highest score, as well as the
score itself
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Storing a single score

* We can score a single score in one value:

score = 10

* This will create a variable which can hold a
single integer value

 The variable has the identifier score
* The variable holds the value 10
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Storing a single name

» We can score a single name in one value:

name = 'Fred’

* This will create a variable which can hold a
single name value

* The variable has the identifier name
* The variable holds the value "Fred"
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Storing lots of scores

* We could put the score values in a list

scorelList = []
scorelList.append(10)

 This puts the score of the first player on
the end of the scores list
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Storing lots of names

« We could use the same trick to store the
names

namelList = []
namelList.append('Fred"')

 This puts the name of the first player
(Fred) on the end of the scores list
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Working with two lists 1s tricky

 We could work with two lists like this

« However it would be hard to manage

— If the names and score lists ever got out of

step (for example when we try to sort them)

then the program would display invalid
results

» We really need a way of lumping the score
and the name together
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Python classes

 To solve this problem Python lets you
create classes

— A class describes the contents and behaviours
of an object
* A class can contains attributes (data that
1s held in a class instance) and methods
(behaviours the class provides)
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A player class

class player:
def init (self, name, score):
self.name = name
self.score = score

» This is a player class

* It just contains a single method which is
used to initialise it
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Classes and Objects

* The class information tells the Python

system how to make an instance of the
class

— This is called an object

* We have told the system how to create a
player instance

 However, we have not actually created any
player objects yet
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Creating an object

p = player('Fred', 10)
print(p.name)

 This creates an instance of the player class
and then prints out the name held in it

* Note that we pass in the name and the score
when we create the instance

» This is passed intothe __init  method
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The i1nit method

class player:
def init (self, name, score):
self.name = name
self.score = score

« The init method is called the
constructor for the class

» Itis called automatically when we make a
new instance
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selfinthe 1nit method

class player:
def init (self, name, score):
self.name = name
self.score = score

« The init  method needs a reference
to the object that is being created

» Python sets this reference and passes it
into the method as the first parameter
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Creating object attributes

class player:
def init (self, name, score):

self.name = name
self.score = score

« The init  method creates name and
score attributes which are held in the

object
» The input values are copied into these
attributes

Classes In Python 21-Feb-14 ©Rob Miles 16
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Fetching data from an object

b = player('Jim', 99)
orint(p.name)
p.name = 'Fred’

* You can get data out of attributes in an
object by referring to them by name

— They are effectively just like regular Python
variables, they just live in an object

Classes In Python  21-Feb-14  ©Rob Miles 17
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Fetching data from an object
p = player('Jim', 99)
print(p.name)

p.name = 'Fred’

 This code would print the name ‘Jim’ and

then change the name of the player to
‘Fred’

» Code can work with and change any
attributes in an object

Classes In Python 21-Feb-14 ©Rob Miles 18
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Special Object Methods

* Python will findthe init  method
and use it when an object 1s to be created

* You can add your own methods to the
objects as well

 We could add a print details method
which prints out the contents of the player
class
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Using attributes in class methods
def print details(self):

print(name, " scored ", score)

You might think you can just use the
attribute names directly in the
print details method

« However this will not work

Classes In Python 21-Feb-14 ©Rob Miles 20
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This is not a happy ending

Traceback (most recent call last):

File "C:\Users\Rob\SkyDrive\Wrestling with Python\Season
2\Week 04 Classes\cricket class.py", line 6, in <module>

p.print_details()

File "C:\Users\Rob\SkyDrive\Wrestling with Python\Season
2\Week 04 Classes\cricket class.py", line 3, in
print_details

print(name, " scored ", score)
NameError: global name 'name’' is not defined

 When the print_details method is
called it fails with the above error

Classes In Python  21-Feb-14  ©Rob Miles 21
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This is not a happy ending

Traceback (most recent call last):

File "C:\Users\Rob\SkyDrive\Wrestling with Python\Season
2\Week 04 Classes\cricket class.py", line 6, in <module>

p.print_details()
File "C:\Users\Rob\SkyDrive\Wrestling with Python\Season

2\Week 04 Classes\cricket class.py", line 3, in
print_details

print(name, " scored ", score)
NameError: global name 'name’' is not defined

* We get the error because Python can’t find
the name attribute in the class

Classes In Python  21-Feb-14  ©Rob Miles 22
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Attributes, methods and references

* To understand why we get the error, and
how to fix it, we have to learn a bit about
how Python finds objects

» Python uses references to locate and use
the objects that a program is working with
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References

» It is important that you
understand this

* You need to know how
references work to understand
Python programs

Classes In Python  21-Feb-14  ©Rob Miles 24
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Simple Variables

age = 99

age

 This creates a variable called age
— You can think of it as a box with a name on it

« When you assign a value to the variable it
puts something in the box

* When you use the variable the value is
fetched out of the box
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Assigning Simple Variables

age = 99
copy = age

age

COopy

« If we assign one variable to another we get
another box which contains the same data
— both these boxes have 99 in them

Classes In Python  21-Feb-14  ©Rob Miles 26
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Creating class instances

Hull

p = player('Fred',10)

player
name='Fred‘
score=99

def print_details()

 When we create a class instance what we
actually create is an object and a reference

* You can think of a reference as a tag

Classes In Python

21-Feb-14 ©Rob Miles
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Reference Assignment

player('Fred',10)
p Q/‘/L/?
p name=PF|?g§ ‘r

def print_details()

©
Il

@]
Il

- If you assign a reference to another you get a
tag which 1s tied to the same object

A copy is not made of the object

Classes In Python  21-Feb-14  ©Rob Miles 28
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References and Confusion

» Most of the time you can treat simple
variables and references as the same thing

* But you need to be aware of their
differences as getting them muddled up
can lead to confusing behaviour

— Changes to one thing might cause changes to

something else — because they may be tags
tied to the same object in memory
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Back to print_ details

def print details(self):
print(name, " scored ", score)

» The reason this doesn’t work is that
Python has no way of finding the name
and score attributes of a particular object
unless we tell it the object we want it to
use
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Back to print_ details

def print details(self):

print(name, scored ", score)

 We saw the self parameter when we
wrotethe init  method

* We use it again in the print_ details
method

Classes In Python  21-Feb-14  ©Rob Miles 31
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Using the self reference

def print details(self):
print(self.name, " scored ", self.score)

* We can use self in our methods to get hold
of attributes

 You can think of it as a “reference to
myself”

* It lets the method know which particular
player the method is running within
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Understanding self

» If this seems confusing (and it is) consider it
from Python’s point of view

 We want print_details to print out the
name and score of the player object it is
running inside

* To do this the method needs to know which
object this is

* The self reference provides this information
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Self and other parameters

def print _details(self, name required):
if name_required :
print(self.name, " scored ", self.score)
else:
print(self.score)

* A method in an object can have multiple
parameters

» This version of print_details is given a
flag to control whether the name is printed
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Self and other parameters

p.print _details(True)

« When we call the method we don’t have to
add the value of self to the call

* The Python system takes care of this
automatically

Classes In Python  21-Feb-14 ©Rob Miles 35
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[.ocal variables in methods

def print details(self, name_required):
total = ©
if name required :

print(self.name, " scored ", self.score)
else:

print(self.score)

 You can declare local variables inside
methods

— These can be used for things like working totals

» They are not part of the class and are
destroyed when the method call ends

Classes In Python  21-Feb-14  ©Rob Miles 36



Creating a player object
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Creating mutant objects

p = player('Fred’',10)

p.age = 21

» Python will create new attributes in
objects when you give them values

— Just like 1t will create new variables the first
time you use them

» The statement above creates a “mutant”
object based on player that has an extra
age attribute
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Mutant Objects are Bad

 This 1s very dangerous

o It might mean that your programs can'’t
rely on all the objects of a particular type
holding the same data

* You should make sure that you create all
the attributes when you initialise the
object and don’t add any on a piecemeal
basis later

Classes In Python  21-Feb-14  ©Rob Miles 39
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Lists of objects
players = []

p = player('Fred',10)
players.append(p)
print(players[0@].name)

* We can add object references to lists, so

that we can store complex collections of
data



TR\
UNIVERSITY OF Hllll

Summary

* Classes bring together methods and
attributes to hold collections of information

« Aclasscanhavean init  method thatis
used to set initial values to the attributes

» Methods in classes are passed a ‘self’
reference which is used by the method to
access attributes in the object

 Classes are managed by references, which are
tags linked to objects in memory



Storing a number of player objects
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