
©Rob Miles

Classes

Wrestling with Python 
Using Classes



©Rob Miles

What we can do so far...

• Store data (using variables)

• Change data (using expressions)

• Make decisions (using conditions)

• Create loops (using while and for)

• Write methods (using def)

• Store data in lists (using er, lists)

21-Feb-14Classes In Python 2



©Rob Miles

Processing Cricket Scores

• Earlier we created a program to process 
cricket scores

• We read each score value in turn and used 
them to work out the highest and lowest 
scores, along with the total score and 
average

21-Feb-14Classes In Python 3



©Rob Miles

Storing the player name

• The user of our cricket score processing 
program would like it to store the name of 
each player as well as their score

• Then it could work out the name of the 
player with the highest score, as well as the 
score itself

21-Feb-14Classes In Python 4



©Rob Miles

Storing a single score

• We can score a single score in one value:

• This will create a variable which can hold a 
single integer value

• The variable has the identifier score

• The variable holds the value 10

score = 10

21-Feb-14Classes In Python 5



©Rob Miles

Storing a single name

• We can score a single name in one value:

• This will create a variable which can hold a 
single name value

• The variable has the identifier name

• The variable holds the value "Fred"

name = 'Fred'

21-Feb-14Classes In Python 6



©Rob Miles

Storing lots of scores

• We could put the score values in a list 

• This puts the score of the first player on 
the end of the scores list

scoreList = []

scoreList.append(10)

21-Feb-14Classes In Python 7



©Rob Miles

Storing lots of names

• We could use the same trick to store the 
names

• This puts the name of the first player 
(Fred) on the end of the scores list

nameList = []

nameList.append('Fred')

21-Feb-14Classes In Python 8



©Rob Miles

Working with two lists is tricky

• We could work with two lists like this

• However it would be hard to manage

– If the names and score lists ever got out of 
step (for example when we try to sort them) 
then the program would display invalid 
results

• We really need a way of lumping the score 
and the name together

21-Feb-14Classes In Python 9



©Rob Miles

Python classes

• To solve this problem Python lets you 
create classes

– A class describes the contents and behaviours 
of an object 

• A class can contains attributes (data that 
is held in a class instance) and methods
(behaviours the class provides)

21-Feb-14Classes In Python 10



©Rob Miles

A player class

• This is a player class

• It just contains a single method which is 
used to initialise it

class player:

def __init__(self, name, score):

self.name = name

self.score = score

21-Feb-14Classes In Python 11



©Rob Miles

Classes and Objects

• The class information tells the Python 
system how to make an instance of the 
class
– This is called an object

• We have told the system how to create a 
player instance 

• However, we have not actually created any 
player objects yet

21-Feb-14Classes In Python 12



©Rob Miles

Creating an object

• This creates an instance of the player class 

and then prints out the name held in it

• Note that we pass in the name and the score 
when we create the instance

• This is passed into the __init__ method

p = player('Fred', 10)

print(p.name)

21-Feb-14Classes In Python 13



©Rob Miles

The __init__ method

• The __init__ method is called the 

constructor for the class

• It is called automatically when we make a 
new instance

class player:

def __init__(self, name, score):

self.name = name

self.score = score

21-Feb-14Classes In Python 14



©Rob Miles

self in the __init__ method

• The __init__ method needs a reference 

to the object that is being created

• Python sets this reference and passes it 
into the method as the first parameter

class player:

def __init__(self, name, score):

self.name = name

self.score = score

21-Feb-14Classes In Python 15



©Rob Miles

Creating object attributes

• The __init__ method creates name and 
score attributes which are held in the 
object 

• The input values are copied into these 
attributes 

class player:

def __init__(self, name, score):

self.name = name

self.score = score

21-Feb-14Classes In Python 16



©Rob Miles

Fetching data from an object

• You can get data out of attributes in an 
object by referring to them by name

– They are effectively just like regular Python 
variables, they just live in an object

p = player('Jim', 99)

print(p.name)

p.name = 'Fred'

21-Feb-14Classes In Python 17



©Rob Miles

Fetching data from an object

• This code would print the name ‘Jim’ and 
then change the name of the player to 
‘Fred’

• Code can work with and change any 
attributes in an object

p = player('Jim', 99)

print(p.name)

p.name = 'Fred'

21-Feb-14Classes In Python 18



©Rob Miles

Special Object Methods

• Python will find the __init__ method 

and use it when an object is to be created

• You can add your own methods to the 
objects as well

• We could add a print_details method 

which prints out the contents of the player 
class

21-Feb-14Classes In Python 19



©Rob Miles

Using attributes in class methods 

• You might think you can just use the 
attribute names directly in the 
print_details method

• However this will not work

def print_details(self):

print(name, " scored ", score)

21-Feb-14Classes In Python 20



©Rob Miles

This is not a happy ending

• When the print_details method is 

called it fails with the above error

Traceback (most recent call last):

File "C:\Users\Rob\SkyDrive\Wrestling with Python\Season 
2\Week 04 Classes\cricket_class.py", line 6, in <module>

p.print_details()

File "C:\Users\Rob\SkyDrive\Wrestling with Python\Season 
2\Week 04 Classes\cricket_class.py", line 3, in 
print_details

print(name, " scored ", score)

NameError: global name 'name' is not defined

21-Feb-14Classes In Python 21



©Rob Miles

This is not a happy ending

• We get the error because Python can’t find 
the name attribute in the class

Traceback (most recent call last):

File "C:\Users\Rob\SkyDrive\Wrestling with Python\Season 
2\Week 04 Classes\cricket_class.py", line 6, in <module>

p.print_details()

File "C:\Users\Rob\SkyDrive\Wrestling with Python\Season 
2\Week 04 Classes\cricket_class.py", line 3, in 
print_details

print(name, " scored ", score)

NameError: global name 'name' is not defined

21-Feb-14Classes In Python 22



©Rob Miles

Attributes, methods and references

• To understand why we get the error, and 
how to fix it, we have to learn a bit about 
how Python finds objects

• Python uses references to locate and use 
the objects that a program is working with

21-Feb-14Classes In Python 23



©Rob Miles

References

• It is important that you 
understand this

• You need to know how 
references work to understand 
Python programs

21-Feb-14Classes In Python 24



©Rob Miles

Simple Variables

• This creates a variable called age
– You can think of it as a box with a name on it

• When you assign a value to the variable it 
puts something in the box

• When you use the variable the value is 
fetched out of the box

Classes In Python

age = 99
age

21-Feb-14 25



©Rob Miles

Assigning Simple Variables

• If we assign one variable to another we get 
another box which contains the same data 
– both these boxes have 99 in them

Classes In Python

age = 99

copy = age
age

copy

21-Feb-14 26



©Rob Miles

Creating class instances

• When we create a class instance what we 
actually create is an object and a reference

• You can think of a reference as a tag

p = player('Fred',10)

Classes In Python

p
player

name='Fred‘

score=99

def print_details()

21-Feb-14 27



©Rob Miles

Reference Assignment

• If you assign a reference to another you get a 
tag which is tied to the same object

• A copy is not made of the object

p = player('Fred',10)

q = p

Classes In Python

player

name='Fred‘

score=99

def print_details()

p

q

21-Feb-14 28



©Rob Miles

References and Confusion

• Most of the time you can treat simple 
variables and references as the same thing

• But you need to be aware of their 
differences as getting them muddled up 
can lead to confusing behaviour

– Changes to one thing might cause changes to 
something else – because they may be tags 
tied to the same object in memory

21-Feb-14Classes In Python 29



©Rob Miles

Back to print_details

• The reason this doesn’t work is that 
Python has no way of finding the name 
and score attributes of a particular object 
unless we tell it the object we want it to 
use

def print_details(self):

print(name, " scored ", score)

21-Feb-14Classes In Python 30



©Rob Miles

Back to print_details

• We saw the self parameter when we 
wrote the __init__ method

• We use it again in the print_details
method

def print_details(self):

print(name, " scored ", score)

21-Feb-14Classes In Python 31



©Rob Miles

def print_details(self):

print(self.name, " scored ", self.score)

Using the self reference

• We can use self in our methods to get hold 
of attributes

• You can think of it as a “reference to 
myself” 

• It lets the method know which particular 
player the method is running within

21-Feb-14Classes In Python 32



©Rob Miles

Understanding self

• If this seems confusing (and it is) consider it 
from Python’s point of view

• We want print_details to print out the 

name and score of the player object it is 
running inside

• To do this the method needs to know which 
object this is

• The self reference provides this information

21-Feb-14Classes In Python 33



©Rob Miles

Self and other parameters

• A method in an object can have multiple 
parameters 

• This version of print_details is given a 
flag to control whether the name is printed

def print_details(self, name_required):

if name_required :

print(self.name, " scored ", self.score)

else:

print(self.score)

21-Feb-14Classes In Python 34



©Rob Miles

Self and other parameters

• When we call the method we don’t have to 
add the value of self to the call

• The Python system takes care of this 
automatically

p.print_details(True)

21-Feb-14Classes In Python 35



©Rob Miles

Local variables in methods

• You can declare local variables inside 
methods
– These can be used for things like working totals 

• They are not part of the class and are 
destroyed when the method call ends

def print_details(self, name_required):
total = 0
if name_required :

print(self.name, " scored ", self.score)
else:

print(self.score)

21-Feb-14Classes In Python 36



©Rob Miles

PRACTICAL BREAK 1

Creating a player object

21-Feb-14Classes In Python 37



©Rob Miles

Creating mutant objects

• Python will create new attributes in 
objects when you give them values
– Just like it will create new variables the first 

time you use them

• The statement above creates a “mutant” 
object based on player that has an extra 
age attribute

p = player('Fred',10)

p.age = 21

21-Feb-14Classes In Python 38



©Rob Miles

Mutant Objects are Bad
• This is very dangerous

• It might mean that your programs can’t 
rely on all the objects of a particular type 
holding the same data

• You should make sure that you create all 
the attributes when you initialise the 
object and don’t add any on a piecemeal 
basis later

21-Feb-14Classes In Python 39



©Rob Miles

Lists of objects

• We can add object references to lists, so 
that we can store complex collections of 
data

players = []

p = player('Fred',10)

players.append(p)

print(players[0].name)

21-Feb-14Classes In Python 40



©Rob Miles

Summary

• Classes bring together methods and 
attributes to hold collections of information

• A class can have an __init__ method that is 
used to set initial values to the attributes

• Methods in classes are passed a ‘self’ 
reference which is used by the method to 
access attributes in the object 

• Classes are managed by references, which are 
tags linked to objects in memory

21-Feb-14Classes In Python 41



©Rob Miles

PRACTICAL BREAK 2

Storing a number of player objects

21-Feb-14Classes In Python 42


