ey Hull

<
=)
‘s
)
7
&
>
=
-

Classes

Wrestling with Python
Using Classes

TR\
UNIVERSITY OF Hllll

What we can do so far...

 Store data (using variables)

* Change data (using expressions)

» Make decisions (using conditions)
 Create loops (using while and for)
» Write methods (using def)

 Store data in lists (using er, lists)

TR\
UNIVERSITY OF Hllll

Processing Cricket Scores

 Earlier we created a program to process
cricket scores

* We read each score value in turn and used
them to work out the highest and lowest
scores, along with the total score and
average

TR\
UNIVERSITY OF Hllll

Storing the player name

» The user of our cricket score processing
program would like it to store the name of
each player as well as their score

e Then it could work out the name of the
player with the highest score, as well as the
score itself

TR\
UNIVERSITY OF Hllll

Storing a single score

* We can score a single score in one value:

score = 10

* This will create a variable which can hold a
single integer value

 The variable has the identifier score
* The variable holds the value 10

TR\
UNIVERSITY OF Hllll

Storing a single name

» We can score a single name in one value:

name = 'Fred’

* This will create a variable which can hold a
single name value

* The variable has the identifier name
* The variable holds the value "Fred"

TR\
UNIVERSITY OF Hllll

Storing lots of scores

* We could put the score values in a list

scorelList = []
scorelList.append(10)

 This puts the score of the first player on
the end of the scores list

TR\
UNIVERSITY OF Hllll

Storing lots of names

« We could use the same trick to store the
names

namelList = []
namelList.append('Fred"')

 This puts the name of the first player
(Fred) on the end of the scores list

TR\
UNIVERSITY OF Hllll

Working with two lists 1s tricky

 We could work with two lists like this

« However it would be hard to manage

— If the names and score lists ever got out of

step (for example when we try to sort them)

then the program would display invalid
results

» We really need a way of lumping the score
and the name together

TR\
UNIVERSITY OF Hllll

Python classes

 To solve this problem Python lets you
create classes

— A class describes the contents and behaviours
of an object
* A class can contains attributes (data that
1s held in a class instance) and methods
(behaviours the class provides)

TR\
UNIVERSITY OF Hllll

A player class

class player:
def init (self, name, score):
self.name = name
self.score = score

» This is a player class

* It just contains a single method which is
used to initialise it

TR\
UNIVERSITY OF Hllll

Classes and Objects

* The class information tells the Python

system how to make an instance of the
class

— This is called an object

* We have told the system how to create a
player instance

 However, we have not actually created any
player objects yet

TR\
UNIVERSITY OF Hllll

Creating an object

p = player('Fred', 10)
print(p.name)

 This creates an instance of the player class
and then prints out the name held in it

* Note that we pass in the name and the score
when we create the instance

» This is passed intothe __init method

TR\
UNIVERSITY OF Hllll

The i1nit method

class player:
def init (self, name, score):
self.name = name
self.score = score

« The init method is called the
constructor for the class

» Itis called automatically when we make a
new instance

TR\
UNIVERSITY OF Hllll

selfinthe 1nit method

class player:
def init (self, name, score):
self.name = name
self.score = score

« The init method needs a reference
to the object that is being created

» Python sets this reference and passes it
into the method as the first parameter

TR\
UNIVERSITY OF Hl.lll

Creating object attributes

class player:
def init (self, name, score):

self.name = name
self.score = score

« The init method creates name and
score attributes which are held in the

object
» The input values are copied into these
attributes

Classes In Python 21-Feb-14 ©Rob Miles 16

TR\
UNIVERSITY OF Hl.lll

Fetching data from an object

b = player('Jim', 99)
orint(p.name)
p.name = 'Fred’

* You can get data out of attributes in an
object by referring to them by name

— They are effectively just like regular Python
variables, they just live in an object

Classes In Python 21-Feb-14 ©Rob Miles 17

TR\
UNIVERSITY OF Hl.lll

Fetching data from an object
p = player('Jim', 99)
print(p.name)

p.name = 'Fred’

 This code would print the name ‘Jim’ and

then change the name of the player to
‘Fred’

» Code can work with and change any
attributes in an object

Classes In Python 21-Feb-14 ©Rob Miles 18

TR\
UNIVERSITY OF Hllll

Special Object Methods

* Python will findthe init method
and use it when an object 1s to be created

* You can add your own methods to the
objects as well

 We could add a print details method
which prints out the contents of the player
class

TR\
UNIVERSITY OF Hl.lll

Using attributes in class methods
def print details(self):

print(name, " scored ", score)

You might think you can just use the
attribute names directly in the
print details method

« However this will not work

Classes In Python 21-Feb-14 ©Rob Miles 20

TN
universrry or Hull

This is not a happy ending

Traceback (most recent call last):

File "C:\Users\Rob\SkyDrive\Wrestling with Python\Season
2\Week 04 Classes\cricket class.py", line 6, in <module>

p.print_details()

File "C:\Users\Rob\SkyDrive\Wrestling with Python\Season
2\Week 04 Classes\cricket class.py", line 3, in
print_details

print(name, " scored ", score)
NameError: global name 'name’' is not defined

 When the print_details method is
called it fails with the above error

Classes In Python 21-Feb-14 ©Rob Miles 21

TN
universrry or Hull

This is not a happy ending

Traceback (most recent call last):

File "C:\Users\Rob\SkyDrive\Wrestling with Python\Season
2\Week 04 Classes\cricket class.py", line 6, in <module>

p.print_details()
File "C:\Users\Rob\SkyDrive\Wrestling with Python\Season

2\Week 04 Classes\cricket class.py", line 3, in
print_details

print(name, " scored ", score)
NameError: global name 'name’' is not defined

* We get the error because Python can’t find
the name attribute in the class

Classes In Python 21-Feb-14 ©Rob Miles 22

TR\
UNIVERSITY OF Hl.lll

Attributes, methods and references

* To understand why we get the error, and
how to fix it, we have to learn a bit about
how Python finds objects

» Python uses references to locate and use
the objects that a program is working with

TN
universrry or Hull

References

» It is important that you
understand this

* You need to know how
references work to understand
Python programs

Classes In Python 21-Feb-14 ©Rob Miles 24

TR\
UNIVERSITY OF Hllll

Simple Variables

age = 99

age

 This creates a variable called age
— You can think of it as a box with a name on it

« When you assign a value to the variable it
puts something in the box

* When you use the variable the value is
fetched out of the box

C@EPN
UNIVERSITY OF Hl'lll

Assigning Simple Variables

age = 99
copy = age

age

COopy

« If we assign one variable to another we get
another box which contains the same data
— both these boxes have 99 in them

Classes In Python 21-Feb-14 ©Rob Miles 26

TN
UNIVERSITY OF

Creating class instances

Hull

p = player('Fred',10)

player
name='Fred‘
score=99

def print_details()

 When we create a class instance what we
actually create is an object and a reference

* You can think of a reference as a tag

Classes In Python

21-Feb-14 ©Rob Miles

27

TR\
UNIVERSITY OF Hl.'lll

Reference Assignment

player('Fred',10)
p Q/‘/L/?
p name=PF|?g§ ‘r

def print_details()

©
Il

@]
Il

- If you assign a reference to another you get a
tag which 1s tied to the same object

A copy is not made of the object

Classes In Python 21-Feb-14 ©Rob Miles 28

TR\
UNIVERSITY OF Hllll

References and Confusion

» Most of the time you can treat simple
variables and references as the same thing

* But you need to be aware of their
differences as getting them muddled up
can lead to confusing behaviour

— Changes to one thing might cause changes to

something else — because they may be tags
tied to the same object in memory

TR\
UNIVERSITY OF Hllll

Back to print_ details

def print details(self):
print(name, " scored ", score)

» The reason this doesn’t work is that
Python has no way of finding the name
and score attributes of a particular object
unless we tell it the object we want it to
use

gg*kﬂul]

UNIVERSITY OF

Back to print_ details

def print details(self):

print(name, scored ", score)

 We saw the self parameter when we
wrotethe init method

* We use it again in the print_ details
method

Classes In Python 21-Feb-14 ©Rob Miles 31

TR\
UNIVERSITY OF Hllll

Using the self reference

def print details(self):
print(self.name, " scored ", self.score)

* We can use self in our methods to get hold
of attributes

 You can think of it as a “reference to
myself”

* It lets the method know which particular
player the method is running within

TR\
UNIVERSITY OF Hllll

Understanding self

» If this seems confusing (and it is) consider it
from Python’s point of view

 We want print_details to print out the
name and score of the player object it is
running inside

* To do this the method needs to know which
object this is

* The self reference provides this information

TR\
UNIVERSITY OF Hl.lll

Self and other parameters

def print _details(self, name required):
if name_required :
print(self.name, " scored ", self.score)
else:
print(self.score)

* A method in an object can have multiple
parameters

» This version of print_details is given a
flag to control whether the name is printed

TR\
UNIVERSITY OF Hl.lll

Self and other parameters

p.print _details(True)

« When we call the method we don’t have to
add the value of self to the call

* The Python system takes care of this
automatically

Classes In Python 21-Feb-14 ©Rob Miles 35

TR\
UNIVERSITY OF Hl.lll

[.ocal variables in methods

def print details(self, name_required):
total = ©
if name required :

print(self.name, " scored ", self.score)
else:

print(self.score)

 You can declare local variables inside
methods

— These can be used for things like working totals

» They are not part of the class and are
destroyed when the method call ends

Classes In Python 21-Feb-14 ©Rob Miles 36

Creating a player object

Classes In Python ©Rob Miles 21-Feb-137

TR\
UNIVERSITY OF Hllll

Creating mutant objects

p = player('Fred’',10)

p.age = 21

» Python will create new attributes in
objects when you give them values

— Just like 1t will create new variables the first
time you use them

» The statement above creates a “mutant”
object based on player that has an extra
age attribute

TN
universrry or Hull

Mutant Objects are Bad

 This 1s very dangerous

o It might mean that your programs can'’t
rely on all the objects of a particular type
holding the same data

* You should make sure that you create all
the attributes when you initialise the
object and don’t add any on a piecemeal
basis later

Classes In Python 21-Feb-14 ©Rob Miles 39

TR\
UNIVERSITY OF Hllll

Lists of objects
players = []

p = player('Fred',10)
players.append(p)
print(players[0@].name)

* We can add object references to lists, so

that we can store complex collections of
data

TR\
UNIVERSITY OF Hllll

Summary

* Classes bring together methods and
attributes to hold collections of information

« Aclasscanhavean init method thatis
used to set initial values to the attributes

» Methods in classes are passed a ‘self’
reference which is used by the method to
access attributes in the object

 Classes are managed by references, which are
tags linked to objects in memory

Storing a number of player objects

Classes In Python ©Rob Miles 21-Feb-142

