
©Rob Miles

Lists

Wrestling with Python
Using Lists

©Rob Miles

The Cinema App So Far

©Rob Miles

Summary

• This is fine for this data set, but it’s not
very flexible

28-Jan-14Chapter 8 : Arrays 3

©Rob Miles

Lists

©Rob Miles

What we can do so far...

• Store data (using variables)

• Change data (using expressions)

• Make decisions (using conditions)

• Create loops (using while and for)

• There is not much more that we need to
know how to do

– But we do need to know how to create lists

©Rob Miles

Variables

• We have a reasonable idea of how to create
a variable:

• This will create a variable which can hold a
single integer value

• The variable has the identifier sales

• The variable holds the value 10

sales = 10

©Rob Miles

Handling more data

• If we want to store more data, the simplest
approach is to create more variables:

sales1 = 5
sales2 = 10
sales3 = 0
sales4 = 30

©Rob Miles

Manipulating data

• However, this makes the data hard to work
with:

if (sales1 > sales2 and
sales1 > sales3 and
sales1 > sales4)

{
print (sales1)

}

©Rob Miles

Manipulating data

if(sales1 > sales2 and sales1 > sales3 and
sales1 > sales4):

print(sales1)
elif(sales2 > sales1 and sales2 > sales3 and
sales2 > sales4):

print(sales2)
elif(sales3 > sales1 and sales3 > sales2 and
sales3 > sales4):

print(sales3)
else:

print(sales4)

©Rob Miles

Lists

• An list lets us store more than one variables
which we can index using a subscript

• sales is a variable which contains 4 other
variables

5

0

10

1

0

2

30

3sales

©Rob Miles

Creating a list

• You can create an empty list

• Or you can specify some data in the list

salesList = []

salesList = [5, 10, 0, 30]

salesList = list()

©Rob Miles

Appending a list

• You can create an empty list

• Or you can specify some data in the list

>>>salesList = [5, 10, 0, 30]

>>>salesList.append(6)

>>>salesList

[5, 10, 0, 30, 6]

©Rob Miles

Accessing a list

• The value in the square brackets is called a
subscript

• Note that the initial element has a
subscript of 0

>>> salesList = [5, 10, 0, 30]
>>> salesList [0]
5
>>> salesList [2]
0

©Rob Miles

Subscripts Etiquette

• Subscripts start at 0

• If you try to access an element which is not
in the list (perhaps by using a subscript
which is too large) your program will fail

• Subscripts should be checked as your
program runs so that our programs never
"fall off the end of a list"

©Rob Miles

Finding the length of a list

• You can find the length of a list like this:

>>> salesList = [5, 10, 0, 30]
>>> len(salesList)

4

©Rob Miles

Other things lists can do

• There are lots of other things that lists can
do:

• insert, remove, clear, sort, reverse etc

• http://docs.python.org/3.3/tutorial/datas
tructures.html#more-on-lists

28-Jan-14Chapter 8 : Arrays 16

http://docs.python.org/3.3/tutorial/datastructures.html#more-on-lists

©Rob Miles

The power of lists
• Lists are great for storing lots of data

• This will read in 4 values, but it would
work just the same if we had 1000 values
to enter

salesList = []
for i in range(4):

salesString = input(“Enter sales”)

salesList.append(int(salesString))

©Rob Miles

Lists don’t have a fixed size
• We don’t even need to know how many

values we will need to enter when we write
our code

salesList = []
moreValues = True

While (moreValues):
salesString = input(“Enter sales”)
salesList.append(int(salesString))
if(input(“More values? y/n”) == “n”):

moreValues = False

©Rob Miles

The power of subscripts
• Subscripts become very powerful when we

discover that we can use a variable as a
subscript:

• This will find the largest sales value from
the first 4 elements in the list

maxSales = 0
for i in range(4):

if (salesList[i] > maxSales):

maxSales = salesList[i]

©Rob Miles

Why the length of a list is useful
• If we don’t know how many elements the

list has – no problem!

• This will find the largest sales value in the
list

maxSales = 0
for i in range(len(salesList)):

if (salesList[i] > maxSales):

maxSales = salesList[i]

©Rob Miles

A list is iterable

• As a list is an iterable type we can use it in to control a
for loop

• i will be assigned each of the values in the list

maxSales = 0
for i in salesList:

if (i > maxSales):

maxSales = i

©Rob Miles

Summary

• Lists are the last thing that we need to
know how to write every program in the
world

• The allow us to store huge amounts of data
and search and sort it

• The key to the power of a list is the use of
variables as subscripts

