ey Hull

=

o

>

=

7
4
=
=

-

Data Processing

Wrestling with Python

TR\
UNIVERSITY OF Hllll

Overview

» The Story so far....

» A Data Processing Problem
— Reading data into a list
— Printing a list
— Sorting a list

» A data query

Processing Data

TR\
UNIVERSITY OF Hllll

What we can do so far

 Store data (using variables)

* Change data (using assignments)

» Make decisions (using conditions)

» Loop round statements(using while)
» Loop through sequences(using for)

» Store collections of data(using lists)

Processing Data 26-Nov-1%

TR\
UNIVERSITY OF Hllll

Our Problem

« We want to read in a number of scores for
a class test

* Then we want to print them out in
ascending order

* Then we want to do things like find out
how many people scored more than 50

TR\
UNIVERSITY OF Hllll

Data in programs

» There are essentially two kinds of data that
we might like to store

 Single values
— The score I got in the exam

» Multiple values
— All the scores for the class

TR\
UNIVERSITY OF Hllll

Single Values

score = 99 # stores the value 99 in score

 This statement creates a single variable
called score that holds the score of one
student

* The Python system can work out that we
are storing numeric values

— If we assigned a string the variable would hold
strings

TR\
UNIVERSITY OF Hllll

Multiple Values

scorelList = [] # create a list called scorelist

 This statement creates a single variable
called scorelList that we can use to hold
lots of scores

* This variable is a list which can hold an
unlimited number of items

» A list provides behaviours we can use to
manage the data stored in it

TR\
UNIVERSITY OF Hllll

Storing Values 1n a list

scorelList.append(99) # put the value 99 in scorelist

 This value puts the value 99 in the list at
the end of it

» A program can add things to a list simply
by appending them to the end using the
append behaviour above

* You can put lots of things in a single list

TR\
UNIVERSITY OF Hllll

Problem: How to we store data?

« We need to read a bunch of test scores
from the user and store them in a list
— It would be nice if the user didn’t have to tell

the program in advance how many numbers
are being entered

» To make this work we might make the
program stop reading numbers when the

user gives an empty string rather than a
value

?@g*sﬂu“

UNIVERSITY OF

Storing numbers

scorelList = []
while(True):
scoreString = input("Enter value (empty string to stop):")
if scoreString == "":
break
scoreValue = int(scoreString)
scorelList.append(scoreValue)

 This will repeatedly read in and store
values until the user enters an empty
string

TR\
UNIVERSITY OF Hllll

Storing numbers

scorelList = []
while(True):
scoreString = input("Enter value (empty string to stop):")
if scoreString == "":
break
scoreValue = int(scoreString)
scorelList.append(scoreValue)

* This statement creates the list that will
hold the data

* The program will append things to this list

?@g*sﬂu“

UNIVERSITY OF

Storing numbers

scorelList = []
while(True):
scoreString = input("Enter value (empty string to stop):")
if scoreString == "":
break
scoreValue = int(scoreString)
scorelList.append(scoreValue)

 This creates a loop that will go on for ever

— Actually it won’t because the user can break
out of the loop by entering an empty score
value

?@gﬁaﬂu“

UNIVERSITY OF

Storing numbers

scorelList = []
while(True):
scoreString = input("Enter value (empty string to stop):")
if scoreString == "":
break
scoreValue = int(scoreString)
scorelList.append(scoreValue)

 This reads in the text of the score value
and stores it 1n a variable called
scoreString

Processing Data 26-Nov-13 15

TR\
UNIVERSITY OF Hllll

Storing numbers

scorelList = []
while(True):
scoreString = input("Enter value (empty string to stop):")
if scoreString == "":
break
scoreValue = int(scoreString)
scorelList.append(scoreValue)

 This makes the loop stop if the user enters
an empty score string

* The break statement causes the program
to break out of the loop

?@g*sﬂu“

UNIVERSITY OF

Storing numbers

scorelList = []
while(True):
scoreString = input("Enter value (empty string to stop):")
if scoreString == "":
break
scoreValue = int(scoreString)
scorelList.append(scoreValue)

 This converts the string that the user typed
into an integer that we can store in the list
of scores

Processing Data 26-Nov-13 17

?@g*sﬂu“

UNIVERSITY OF

Storing numbers

scorelList = []
while(True):
scoreString = input("Enter value (empty string to stop):")
if scoreString == "":
break
scoreValue = int(scoreString)
scorelList.append(scoreValue)

 This appends the score value on the end of
the list of scores

 This is where the scores are actually stored

Processing Data 26-Nov-13 18

TR\
UNIVERSITY OF Hllll

Problem: Printing the data

e We have now read in the data and stored it
in a list
It might be nice to print it out next

 To make this work we need a construction
that will work through a list one element at
a time

— The for loop construction would be good for
this

TR\
UNIVERSITY OF Hllll

Printing numbers

for score in scorelList:
print(score)

* The for loop construction is very good for
working through collections

» Each time round the loop the value in
score 1s the next one in the list

» The loop stops automatically at the end of
the list

TR\
UNIVERSITY OF Hllll

Printing numbers

for score in scorelist:
print(score)

 Set up the for loop to work through the list

e The variable score will take the value of
each successive element in turn

» Python does all this for us automatically

TR\
UNIVERSITY OF Hl.lll

Printing numbers

for score in scorelList:

print(score)

 This prints the value in score

e The statement is performed repeatedly by
the loop (how do we know this?)

TR\
UNIVERSITY OF Hllll

Printing numbers

for score in scorelList:

print(score)

 This prints the value in score

e The statement is performed repeatedly by
the loop (how do we know this?)

— We know this because it i1s indented under the
loop

— If it was on the left edge of the screen it would
not do what we want

TR\
UNIVERSITY OF Hllll

Problem: Sorting the data

 We want the program to print out the
scores 1n ascending order

* To do this we need to sort the collection of
values
 This sounds like it might be hard work

— But fortunately Python has this behaviour
“built in”

TR\
UNIVERSITY OF Hllll

Sorting numbers

scorelList.sort()

e This statement asks the list to sort itself

» After this statement completes the list
contains the values in ascending order

 If we work through the list and print the

values they come out with the smallest
values first

TR\
UNIVERSITY OF Hllll

Sorting numbers in reverse order

scorelList.sort(reverse=True)

* We can change how the sort works by feeding
in a parameter called reverse which we set
to True

— A parameter is something that is fed into a
method to tell it what to do

» The sort will now put the largest values first

* The default value for the reverse parameter
1s true

Processing Data

TR\
UNIVERSITY OF Hllll

Data Queries

« Now that we have the scores data in the
program we can have some fun with it:
— Find out how many people scored zero

— Find out how many people scored more than
fifty percent

— Work out the average score
— Work out the highest score

TR\
UNIVERSITY OF Hl.lll

Problem: How Many Zeros?

» We want to know how many scores of zero
were entered

* We need to work through the list looking
for zero scores

 This is a similar kind of look to the one
used to print out the values

TR\
UNIVERSITY OF Hllll

Finding Zeroes

zeroCount = ©
for score in scorelist:
if score ==
zeroCount = zeroCount + 1

print("Number of people who scored zero: ", zeroCount)

» This loop will look through the list finding
all the scores of zero

 FEach time it finds a zero it adds one to the
count

TR\
UNIVERSITY OF Hl.'lll

Problem: Counting scores > 50

« Now we want to count the number of
scores that are greater than fifty

— Will this be difficult?
— What will we base the code on?

— Is this easier if the list has been sorted?

TR\
UNIVERSITY OF Hllll

Summary

» We can use lists to store large amounts of
data

« We can use for loops to work through
them and pull out each element in turn

* A list provides built-in behaviours (for
example sorting)

