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Data Processing

Wrestling with Python




TR\
UNIVERSITY OF Hllll

Overview

» The Story so far....

» A Data Processing Problem
— Reading data into a list
— Printing a list
— Sorting a list

» A data query
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What we can do so far

 Store data (using variables)

* Change data (using assignments)

» Make decisions (using conditions)

» Loop round statements(using while)
» Loop through sequences(using for)

» Store collections of data(using lists)
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Our Problem

« We want to read in a number of scores for
a class test

* Then we want to print them out in
ascending order

* Then we want to do things like find out
how many people scored more than 50
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Data in programs

» There are essentially two kinds of data that
we might like to store

 Single values
— The score I got in the exam

» Multiple values
— All the scores for the class
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Single Values

score = 99 # stores the value 99 in score

 This statement creates a single variable
called score that holds the score of one
student

* The Python system can work out that we
are storing numeric values

— If we assigned a string the variable would hold
strings
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Multiple Values

scorelList = [] # create a list called scorelist

 This statement creates a single variable
called scorelList that we can use to hold
lots of scores

* This variable is a list which can hold an
unlimited number of items

» A list provides behaviours we can use to
manage the data stored in it
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Storing Values 1n a list

scorelList.append(99) # put the value 99 in scorelist

 This value puts the value 99 in the list at
the end of it

» A program can add things to a list simply
by appending them to the end using the
append behaviour above

* You can put lots of things in a single list
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Problem: How to we store data?

« We need to read a bunch of test scores
from the user and store them in a list
— It would be nice if the user didn’t have to tell

the program in advance how many numbers
are being entered

» To make this work we might make the
program stop reading numbers when the

user gives an empty string rather than a
value
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Storing numbers

scorelList = []
while(True):
scoreString = input("Enter value (empty string to stop):")
if scoreString == "":
break
scoreValue = int(scoreString)
scorelList.append(scoreValue)

 This will repeatedly read in and store
values until the user enters an empty
string
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Storing numbers

scorelList = []
while(True):
scoreString = input("Enter value (empty string to stop):")
if scoreString == "":
break
scoreValue = int(scoreString)
scorelList.append(scoreValue)

* This statement creates the list that will
hold the data

* The program will append things to this list
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Storing numbers

scorelList = []
while(True):
scoreString = input("Enter value (empty string to stop):")
if scoreString == "":
break
scoreValue = int(scoreString)
scorelList.append(scoreValue)

 This creates a loop that will go on for ever

— Actually it won’t because the user can break
out of the loop by entering an empty score
value
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Storing numbers

scorelList = []
while(True):
scoreString = input("Enter value (empty string to stop):")
if scoreString == "":
break
scoreValue = int(scoreString)
scorelList.append(scoreValue)

 This reads in the text of the score value
and stores it 1n a variable called
scoreString
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Storing numbers

scorelList = []
while(True):
scoreString = input("Enter value (empty string to stop):")
if scoreString == "":
break
scoreValue = int(scoreString)
scorelList.append(scoreValue)

 This makes the loop stop if the user enters
an empty score string

* The break statement causes the program
to break out of the loop
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Storing numbers

scorelList = []
while(True):
scoreString = input("Enter value (empty string to stop):")
if scoreString == "":
break
scoreValue = int(scoreString)
scorelList.append(scoreValue)

 This converts the string that the user typed
into an integer that we can store in the list
of scores

Processing Data 26-Nov-13 17



?@g*sﬂu“

UNIVERSITY OF

Storing numbers

scorelList = []
while(True):
scoreString = input("Enter value (empty string to stop):")
if scoreString == "":
break
scoreValue = int(scoreString)
scorelList.append(scoreValue)

 This appends the score value on the end of
the list of scores

 This is where the scores are actually stored
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Problem: Printing the data

e We have now read in the data and stored it
in a list
It might be nice to print it out next

 To make this work we need a construction
that will work through a list one element at
a time

— The for loop construction would be good for
this
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Printing numbers

for score in scorelList:
print(score)

* The for loop construction is very good for
working through collections

» Each time round the loop the value in
score 1s the next one in the list

» The loop stops automatically at the end of
the list
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Printing numbers

for score in scorelist:
print(score)

 Set up the for loop to work through the list

e The variable score will take the value of
each successive element in turn

» Python does all this for us automatically
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Printing numbers

for score in scorelList:

print(score)

 This prints the value in score

e The statement is performed repeatedly by
the loop (how do we know this?)
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Printing numbers

for score in scorelList:

print(score)

 This prints the value in score

e The statement is performed repeatedly by
the loop (how do we know this?)

— We know this because it i1s indented under the
loop

— If it was on the left edge of the screen it would
not do what we want
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Problem: Sorting the data

 We want the program to print out the
scores 1n ascending order

* To do this we need to sort the collection of
values
 This sounds like it might be hard work

— But fortunately Python has this behaviour
“built in”
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Sorting numbers

scorelList.sort()

e This statement asks the list to sort itself

» After this statement completes the list
contains the values in ascending order

 If we work through the list and print the

values they come out with the smallest
values first
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Sorting numbers in reverse order

scorelList.sort(reverse=True)

* We can change how the sort works by feeding
in a parameter called reverse which we set
to True

— A parameter is something that is fed into a
method to tell it what to do

» The sort will now put the largest values first

* The default value for the reverse parameter
1s true
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Data Queries

« Now that we have the scores data in the
program we can have some fun with it:
— Find out how many people scored zero

— Find out how many people scored more than
fifty percent

— Work out the average score
— Work out the highest score
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Problem: How Many Zeros?

» We want to know how many scores of zero
were entered

* We need to work through the list looking
for zero scores

 This is a similar kind of look to the one
used to print out the values
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Finding Zeroes

zeroCount = ©
for score in scorelist:
if score ==
zeroCount = zeroCount + 1

print("Number of people who scored zero: ", zeroCount)

» This loop will look through the list finding
all the scores of zero

 FEach time it finds a zero it adds one to the
count
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Problem: Counting scores > 50

« Now we want to count the number of
scores that are greater than fifty

— Will this be difficult?
— What will we base the code on?

— Is this easier if the list has been sorted?
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Summary

» We can use lists to store large amounts of
data

« We can use for loops to work through
them and pull out each element in turn

* A list provides built-in behaviours (for
example sorting)



