
Fundamentals of Electrical and Electronic Engineering

400462

Digital Electronics

Dr Ian M. Bell

Numerical Data and Arithmetic Circuits

Representation of numbers in logic circuits

• Coding to represent numbers in general
• Representing negative numbers

Basic arithmetic operations very important in digital systems

• Addition
• Subtraction
• Multiplication
• Division

The other three can be derived from addition

• Subtraction Addition of negative numbers
• Multiplication Repeated addition
• Division Repeated subtraction

Comparison operations are also very important

• Equals
• Greater than
• Less than

Why?
Numerical/mathematical
operations are performed
in wide range of digital
systems from
spreadsheets and graphics
on computers to robotic
control systems and digital
signal processing of audio
and video

Numerical Data and Arithmetic Circuits

Representation of numbers in logic circuits

• Coding to represent numbers in general
• Representing negative numbers

Basic arithmetic operations very important in digital systems

• Addition
• Subtraction
• Multiplication
• Division

The other three can be derived from addition

• Subtraction Addition of negative numbers
• Multiplication Repeated addition
• Division Repeated subtraction

Comparison operations are also very important

• Equals
• Greater than
• Less than

Numbers in Digital Systems

• Digital systems represent / analyse information in discrete form

o “1s and 0s” not analogue voltages

• A collection of N binary logic signals (on wires or in registers) together
can represent 2N different codes

• A code a simply a particular pattern of 1s and 0s (e.g. 0110 or 1110)

o We can define which code represents which numerical value

• 2N codes can represent (up to) 2N possible numbers (numerical values)

• A straightforward and commonly used code for numbers is to use the N
logic signals to represent the digits in an N-digit unsigned base-2 integer

o Often called “Binary”

o Truth table rows often in binary order

• Binary is not the only coding system for integers in use (e.g. Gray Code
and BCD are an alternatives)

Number in base 2:

N2 = dn 2n + dn-1 2n-1 + … d1 21 + d0 20 + d-1 2-1 + d-2 2-2 +...+ d-m 2-m

dn may only be 0 or 1 and is a binary digit or bit

110 = 00012 310 = 00112 810 = 10002 0.510 = 0.12

Binary Numbers

MSB – most significant bit

LSB – least significant bit

Examples

What is the binary representation of decimal 98 using 8-bits?

What is 1 0 1 1 0 1 0 0 2 in decimal?

Various Codes for Numbers 0 to 15

Decimal Binary BCD Gray Code
0 0000 0000 0000 0000
1 0001 0000 0001 0001
2 0010 0000 0010 0011
3 0011 0000 0011 0010
4 0100 0000 0100 0110
5 0101 0000 0101 0111
6 0110 0000 0110 0101
7 0111 0000 0111 0100
8 1000 0000 1000 1100
9 1001 0000 1001 1101

10 1010 0001 0000 1111
11 1011 0001 0001 1110
12 1100 0001 0010 1010
13 1101 0001 0011 1011
14 1110 0001 0100 1001
15 1111 0001 0101 1000

Numerical Coding

Binary

• Code follows base-2 unsigned integers

• Leads to efficient circuits for data processing

BCD – Binary Coded Decimal

• Each four-bit group represents a decimal digit using binary code

• Generally less efficient circuitry than binary

• Suitable for relatively straightforward processing (e.g. counting) particularly when
data is to be displayed directly in decimal (e.g. on seven segment display)

Gray Code

• Only one bit changes between successive values

• Used in special circumstances to avoid errors as number values change

• Output from mechanical position sensors

• Avoiding errors due to timing differences along paths taken by each bit

• Karnaugh map rows and columns are in gray code order

Numbers in Digital Systems

Use of unsigned binary integers does not cover

• Negative values

 Use 2’s complement code – discussed later

• Fractional values

 But we can expand the digits beyond the binary point

• Very large and very small values

 Would required too many bits as an integer or fraction,
 Such numbers have to be coded in a floating point format
 e.g. 6.626 × 10-34 (decimal floating point)

Numbers in Digital Systems

Binary not very convenient for humans to use (or paper or on screen)

Binary numbers often written using base-8 (octal) or base-16 (hex)

Octal – uses groups of 3 bits from binary word
– mainly historical, not widely used now

Hexadecimal – uses groups of 4 bits from binary word
– widely used

Number Base (radix) Available Digits

2 (binary) 0,1

8 (octal) 0,1,2,3,4,5,6,7

10 (decimal) 0,1,2,3,4,5,6,7,8,9

16 (hexadecimal) 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

• Any multi-bit digital code / data can be written in octal or hex for convenience

• It does not have to represent a number (e.g. it could be processor instruction
codes, text or other data)

Numbers 0 to 15 in Number Bases 10, 2, 8 and 16

Decimal Binary Octal Hexadecimal
0 0000 00 0
1 0001 01 1
2 0010 02 2
3 0011 03 3
4 0100 04 4
5 0101 05 5
6 0110 06 6
7 0111 07 7
8 1000 10 8
9 1001 11 9

10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Example of binary data written using hexadecimal

Binary 0100001011011010

Groups of 4 bits 0100 0010 1101 1010

Hex 42DA

Example 2

Binary 1110010110101001

Hex

Numerical Data and Arithmetic Circuits

Representation of numbers in logic circuits

• Coding to represent numbers in general
• Representing negative numbers

Basic arithmetic operations very important in digital systems

• Addition
• Subtraction
• Multiplication
• Division

The other three can be derived from addition

• Subtraction Addition of negative numbers
• Multiplication Repeated addition
• Division Repeated subtraction

Comparison operations are also very important

• Equals
• Greater than
• Less than

Adder Circuits

Adder circuits can be based on classic long addition

Here is an example of long addition in decimal

86 + 57 = 143

 8 6
+ 5 7
1 1 0

1
1
4

1
3

6 + 7, the result is 13, so the first digit is 3 and we carry 1

8 + 5 + 1 (the carry), the result is 14, so the second digit is 4 and we carry 1

Adder Circuits

The same long addition process can be used with binary numbers

0110 + 0011 = 1001

 0 1 1 0
+ 0 0 1 1
0 1 1 0 0

0
1

1
0

1
0

0
1

Adder Circuits – Example

Perform the following long addition in binary

(written out as on the previous slide)

1010 + 1011

Adder Circuits

0110 + 0011 = 1001

 0 1 1 0
+ 0 0 1 1
0 1 1 0 0

0
1

1
0

1
0

0
1

0 1

1

0

1 1

0

1

1 0

0

1

0 0

1

0 0

• An adder circuit can be based
on binary long addition

• Each block in the circuit
handles one digit

• Each block adds two 1-bit
numbers and also has a carry
in and carry out

1-bit Adders

XOR gate

• Adds two one-bit binary numbers and gives the "units" result

• No carry in

• No carry out

Half adder

• Adds two 1-bit binary numbers and gives a 2-bit binary result

• The 2s output usually referred to as the carry-out

• No carry-in

Full adder

• Adds two 1-bit binary numbers, plus carry in and gives a 2-bit binary result

• The 2s output is usually referred to as the carry-out

To add multi-bit numbers we need carry-in and

carry-out so full adders are required

1-bit Adders

Truth tables for a basic 1-bit adder S = A + B

A and B single bit, S is two bits (S1S0)

Binary Addition Truth Tables

A0 B0 S0

0 0 0

0 1 1

1 0 1

1 1 0

A0 B0 S1

0 0 0

0 1 0

1 0 0

1 1 1

Boolean Equations

001 BAS 000 BAS 

1-bit Adders

1-bit half adder implemented using XOR and AND gate

B0

A0

S1

S0

This is a half adder….

…there is no carry in or out

… we need 2 to make a full adder

Full Adder

The full adder comprises two half adders and an XOR gate

The full adder adds two 1-bit binary numbers plus a carry in.

It produces 1-bit sum output and a carry output

0 1

1

0

1 1

0

1

1 0

0

1

0 0

1

0 0
• The full adder is the addition

block in the “long addition”
circuit shown earlier

4-Bit Adder

The adder circuit in more detail
0 1

1

0

1 1

0

1

1 0

0

1

0 0

1

0 0

• More stages can be added to add number with more bits

• The basic structure is just repeated N times for N bits

Ripple Carry Adder– Speed Problem

This circuit is called a ripple carry adder because the carry signal
propagates (“ripples”) through the adder from the least significant bit to
the final carry out

In a large adder this long signal path had a large delay, limiting the speed
of the adder

Carry Look-Ahead (CLA)

• Aims to reduce the total carry delay to produce a faster adder

• The final carry for an adder section (e.g. 4 bits) is produced by a separate CLA circuit

• The carry from the (say) 4th bit will occur much earlier than in a standard adder

• When CLA stages are linked together in large adders the speed up is very significant

If all gates have a delay of
2 ns what are the worse
case delays for the ripple
carry out and look ahead
carry out?

You will need to complete
the circuit for the ripple
carry out do to this

Adders and Subtractors

We have adder circuits…

But how to perform subtraction?

This raises the issue of how we represent negative numbers in arithmetic
circuits.

Numerical Data and Arithmetic Circuits

Representation of numbers in logic circuits

• Coding to represent numbers in general
• Representing negative numbers

Basic arithmetic operations very important in digital systems

• Addition
• Subtraction
• Multiplication
• Division

The other three can be derived from addition

• Subtraction Addition of negative numbers
• Multiplication Repeated addition
• Division Repeated subtraction

Comparison operations are also very important

• Equals
• Greater than
• Less than

Negative Numbers – Sign and Magnitude

• We usually write numbers as sign and magnitude

+3 -8 +72 -109 etc

• We can use a sign bit in a similar way for binary numbers in circuits,
e.g. as sign bit plus 8 magnitude bits:

0 0000 0011

1 0000 1000

0 0101 1000

1 0110 1101

• Unfortunately this approach does not lead to straightforward design
of arithmetic circuits

• Another approach is needed

Modulo Arithmetic

Example – modulo 5
 0

2

1

3

4

1 + 1 = 2

4 + 1 = 0

3 + 3 = 1

3 – 3 = 0

3 – 4 = 4

Modulo arithmetic is relevant to digital circuits because numerical
values are usually limited to a fixed number of bits

Note that 5 and 0 are congruent in modulo 5

In general for module n the largest number is n-1 but in some cases n is used, in
particuar in stating time of day where for example 12:00 is used instead of 00:00
in the 12-hour clock system (where hours are modulo 12)

4 bit binary data coded as unsigned integers

 0
1

2

3

4

5

6

9
8

15

14

13

12

11

10

7

Unsigned

One code for 0

One abrupt transition: 15 to 0 (at the extreme values)

 0000
0001

0010

0011

0100

0101

0110

1001
1000

1111

1110

1101

1100

1011

1010

0111

4 bit binary data coded as sign-magnitude signed integers

Two codes for zero +0 and -0

Two abrupt transactions: -7 to +0 and 7 to -0

Codes do not go smoothly through 0

Cannot add/subtract N by moving forwards/backwards N steps for all
in-range values

 0000
0001

0010

0011

0100

0101

0110

1001
1000

1111

1110

1101

1100

1011

1010

0111
Sign-Magnitude

 0
1

2

3

4

5

6

-1 -0

-7

-6

-5

-4

-3

-2

7

4 bit binary data coded as 2s compliment signed integers

One code for 0

One abrupt transition: 8 to -7 (at the extreme values – like unsigned)

Codes go smoothly through 0 (-1 to 0 to +1)

Can add/subtract N by moving forwards/backwards N steps for all in-
range values (like unsigned)

2s Compliment

 0
1

2

3

4

5

6

-7 8

-1

-2

-3

-4

-5

-6

7

 0000
0001

0010

0011

0100

0101

0110

1001
1000

1111

1110

1101

1100

1011

1010

0111

Negative Numbers - Complements

• Subtraction performed by adding a number’s complement

• There are various forms of complement

• The Radix Complement is found by taking the next power of the
number base (radix) and subtracting the number

Example using base 10, 10’s Complement

-45 in base 10, two digit numbers, sign-magnitude format

Next power is 100 (three digits)

100 – 45 is 55

55 is the 10’s complement of -45

Negative Numbers – Complements

Example using base 2, 2’s Complement

-0110 in binary, 4 digit (bit) sign-magnitude numbers

Next power of two is 10000 (5 bits)

10000 – 0110 is 1010 (16 – 6 = 10)

1010 is the 4-bit 2’s complement of -0110

• obtain the 2’s complement we can

• Invert all the bits and add 1 e.g. 011010011010

• This is easy to implement as a logic circuit

Subtraction Using Radix Complements

Example in base 10 (10’s complement, 2 digits)

47 – 23

complement of 23 is 100 – 23  77

so –23 is represented by 77

47 – 23

47 + (-23)

47 + 77 = 124

Use modulo 100 so 124  24

Result is 24

This 2 digit 10’s complement number is positive so result in sign-magnitude
format is the same (24).

Subtraction Using Radix Complements

Example in base 10 (10’s complement, 2 digits)

25 – 32

complement of 32 is 100 – 32  68

so –32 is represented by 68

25 – 32

25 + (-32)

25 + 68 = 93

Result is 93

93 represents a negative number in 2-digit 10’s complement

To convert to sign-magnitude: 100 – 93  7

Result in sign-magnitude format is –7

